专题05 面积的最值问题-2022届中考数学压轴大题专项训练
展开专题05 面积的最值问题 2022届中考数学压轴大题专项训练(原卷版)
1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC上的点,连接PQ,MN,PN交AD于E.求
(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;
(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.
2.如图,四边形的两条对角线、互相垂直,,当、的长是多少时,四边形的面积最大?
3.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.
(1)当四边形EFGH为正方形时,求DG的长;
(2)当DG=6时,求△FCG的面积;
(3)求△FCG的面积的最小值.
4.如图,已知点P是∠AOB内一点,过点P的直线MN分别交射线OA,OB于点M,N,将直线MN绕点P旋转,△MON的形状与面积都随之变化.
(1)请在图1中用尺规作出△MON,使得△MON是以OM为斜边的直角三角形;
(2)如图2,在OP的延长线上截取PC=OP,过点C作CM∥OB交射线OA于点M,连接MP并延长交OB于点N.求证:OP平分△MON的面积;
(3)小亮发现:在直线MN旋转过程中,(2)中所作的△MON的面积最小.请利用图2帮助小亮说明理由.
5.如图,现有一张矩形纸片,,,点,分别在矩形的边,上,将矩形纸片沿直线折叠,使点落在矩形的边上,记为点,点落在处,连接,交于点,连接.
(1)求证:;
(2)当,重合时,求的值;
(3)若的面积为,求的取值范围.
6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短边长n,且n=2m﹣4,大正方形的面积为S.
(1)求S关于m的函数关系式.
(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.
7.如图:已知矩形ABCD中,AB=cm,BC=3cm,点O在边AD上,且AO=1cm.将矩形ABCD绕点O逆时针旋转角(),得到矩形A′B′C′D′
(1)求证:AC⊥OB;
(2)如图1, 当B′落在AC上时,求AA′;
(3)如图2,求旋转过程中△CC′D′的面积的最大值.
8.[问题提出]
(1)如图①,在中,为上一点,则面积的最大值是
(2)如图②,已知矩形的周长为,求矩形面积的最大值
[实际应用]
(3)如图③,现有一块四边形的木板余料,经测量且木匠师傅从这块余料中裁出了顶点在边上且面积最大的矩形求该矩形的面积
9.如图,已知,是线段上的两点,,,,以为中心顺时针旋转点,以为中心逆时针旋转点,使,两点重合成一点,构成,设.
(1)求的取值范围;
(2)求面积的最大值.
10.如图,已知AB为半圆O的直径,P为半圆上的一个动点(不含端点),以OP、OB为一组邻边作▱POBQ,连接OQ、AP,设OQ、AP的中点分别为M、N,连接PM、ON.
(1)试判断四边形OMPN的形状,并说明理由.
(2)若点P从点B出发,以每秒15°的速度,绕点O在半圆上逆时针方向运动,设运动时间为ts.
①试求:当t为何值时,四边形OMPN的面积取得最大值?并判断此时直线PQ与半圆O的位置关系(需说明理由);
②是否存在这样的t,使得点Q落在半圆O内?若存在,请直接写出t的取值范围;若不存在,请说明理由.
11.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.
(1)求出图②中线段PQ所在直线的函数表达式;
(2)将△DCE沿DE翻折,得△DME.
①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;
②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.
12.问题提出
(1)如图①,已知线段AB,请以AB为斜边,在图中画出一个直角三角形;
(2)如图②,已知点A是直线l外一点,点B、C均在直线l上,AD⊥l且AD=3,∠BAC=60°,求△ABC面积的最小值;
问题解决
(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=6m,点E、F分别为AB、AD上的点,若保持CE⊥CF,那么四边形AECF的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.
挑战2023年中考数学压轴题专题05+二次函数与面积最值定值问题: 这是一份挑战2023年中考数学压轴题专题05+二次函数与面积最值定值问题,共87页。
中考数学 综合与实践(压轴题) 题型二:面积最值问题专题模拟训练-解析版: 这是一份中考数学 综合与实践(压轴题) 题型二:面积最值问题专题模拟训练-解析版,共78页。
专题05 二次函数与面积最值定值问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用): 这是一份专题05 二次函数与面积最值定值问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用),文件包含专题5二次函数与面积最值定值问题-挑战中考数学压轴题之学霸秘笈大揭秘全国通用解析版docx、专题5二次函数与面积最值定值问题-挑战中考数学压轴题之学霸秘笈大揭秘全国通用原卷版docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。

