





所属成套资源:2022年新高二年级数学暑假精品课程(人教A版2019)
第十三讲 导数在研究函数中的应用-2022年新高二年级数学暑假精品课程(人教A版2019)练习题
展开
这是一份第十三讲 导数在研究函数中的应用-2022年新高二年级数学暑假精品课程(人教A版2019)练习题,文件包含第十三讲导数在研究函数中的应用解析版doc、第十三讲导数在研究函数中的应用原卷版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
第十三讲 导数在研究函数中的应用
【基础知识】
1.函数的单调性与导数的关系
函数y=f(x)在某个区间内可导,则:
(1)若f′(x)>0,则f(x)在这个区间内单调递增;
(2)若f′(x)0,右侧f′(x)0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.
2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.
3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.
4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.
【考点剖析】
考点一 求函数的单调区间
【例1】 已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.
(1)确定a的值;
(2)若g(x)=f(x)ex,求函数g(x)的单调减区间.
解 (1)对f(x)求导得f′(x)=3ax2+2x,
因为f(x)在x=-处取得极值,所以f′=0,
即3a·+2·=-=0,解得a=.
(2)由(1)得g(x)=ex,
故g′(x)=x(x+1)(x+4)ex.
令g′(x)
相关试卷
这是一份第二十三讲 椭圆及其方程-2022年新高二年级数学暑假精品课程(人教A版2019)练习题,文件包含第二十三讲椭圆及其方程解析版doc、第二十三讲椭圆及其方程原卷版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份第三讲 基本不等式-2022年新高二年级数学暑假精品课程(人教A版2019)练习题,文件包含第三讲基本不等式解析版doc、第三讲基本不等式原卷版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份第十二讲 导数的概念及运算-2022年新高二年级数学暑假精品课程(人教A版2019)练习题,文件包含第十二讲导数的概念及运算解析版doc、第十二讲导数的概念及运算原卷版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
