|试卷下载
搜索
    上传资料 赚现金
    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评练习题(无超纲)
    立即下载
    加入资料篮
    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评练习题(无超纲)01
    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评练习题(无超纲)02
    2022年必考点解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测评练习题(无超纲)03
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题

    展开
    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题,共30页。试卷主要包含了若O是ABC的内心,当时,等内容,欢迎下载使用。

    九年级数学下册第二十九章直线与圆的位置关系专项测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、若正方形的边长为4,则它的外接圆的半径为(      

    A. B.4 C. D.2

    2、如图,从⊙O外一点P引圆的两条切线PAPB,切点分别是AB,若∠APB=60°,PA=5,则弦AB的长是(  )

    A. B. C.5 D.5

    3、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )

    A.4m2 B.12m2 C.24m2 D.24m2

    4、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(      

    A. B. C. D.

    5、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.

    6、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 (      

    A.3 B.5 C.6 D.10

    7、如图,AB是⊙O的直径,CD是⊙O上两点,ADCD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于(      

    A.40° B.50° C.55° D.60°

    8、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm

    9、若OABC的内心,当时,      

    A.130° B.160° C.100° D.110°

    10、如图,中,,点O的内心.则等于(      

    A.124° B.118° C.112° D.62°

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D.若∠A=30°,则∠D的度数为______°.

    2、如图,正五边形ABCDE内接于⊙O,作OFBC交⊙O于点F,连接FA,则∠OFA=_____°.

    3、已知正六边形的半径为2,则该正六边形的面积为______°.

    4、如图,PB与⊙O相切于点BOP与⊙O相交于点A,∠P=30°,若⊙O的半径为2,则OP的长为 _____.

    5、在下图中,的直径,要使得直线的切线,需要添加的一个条件是________.(写一个条件即可)

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,的直径,是圆上两点,且有,连结,作的延长线于点

    (1)求证:的切线;

    (2)若,求阴影部分的面积.(结果保留

    2、如图,AB的切线,B为切点,过点B,垂足为点E,交于点C,连接CO,并延长COAB的延长线交于点D,与交于点F,连接AC

    (1)求证:AC的切线:

    (2)若半径为2,.求阴影部分的面积.

    3、如图,△ABC内接于⊙OAB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DCAB的延长线交于点E

    (1)求证:直线DC是⊙O的切线;

    (2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).

    4、如图,⊙OABC的外接圆,∠ABC=45°,OCADADBC的延长线于DABOCE

    (1)求证:AD是⊙O的切线;

    (2)若AE=CE=2,求⊙O的半径和线段BC的长.

    5、如图,的直径,是半径,连接.延长至点,使,过点的延长线于点

    (1)求证:的切线;

    (2)若,求半径的长.

     

    -参考答案-

    一、单选题

    1、C

    【解析】

    【分析】

    根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.

    【详解】

    解:∵四边形是正方形,

    的交点即为它的外接圆的圆心,

    故选C

    【点睛】

    本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.

    2、C

    【解析】

    【分析】

    先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.

    【详解】

    解:∵PAPB为⊙O的切线,

    PA=PB

    ∵∠APB=60°,

    ∴△APB为等边三角形,

    AB=PA=5.

    故选:C.

    【点睛】

    本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.

    3、D

    【解析】

    【分析】

    先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案

    【详解】

    解:如图所示,正六边形ABCDEF,连接OBOC,过点OOPBCP

    由题意得:BC=4cm,

    ∵六边形ABCD是正六边形,

    ∴∠BOC=360°÷6=60°,

    又∵OB=OC

    ∴△OBC是等边三角形,

    故选D.

    【点睛】

    本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.

    4、A

    【解析】

    【分析】

    连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.

    【详解】

    解:连结OC

    ∵以边上一点为圆心作,恰与边分别相切于点A,

    DC=ACOC平分∠ACD

    ∴∠ACD=90°-∠B=60°,

    ∴∠OCD=∠OCA==30°,

    在RtABC中,AC=ABtanB=3×

    在RtAOC中,∠ACO=30°,AO=ACtan30°=

    OD=OA=1,DC=AC=

    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,

    S阴影=

    故选择A.

    【点睛】

    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.

    5、D

    【解析】

    【分析】

    连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.

    【详解】

    解:连接OFOEOG

    AB、BC、CD分别与相切,

    ,且

    OB平分OC平分

    故选:D.

    【点睛】

    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    6、A

    【解析】

    【分析】

    根据直线l和⊙O相交dr,即可判断.

    【详解】

    解:∵⊙O的半径为5,直线l与⊙O相交,

    ∴圆心D到直线l的距离d的取值范围是0≤d<5,

    故选:A.

    【点睛】

    本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交dr②直线l和⊙O相切d=r③直线l和⊙O相离dr

    7、C

    【解析】

    【分析】

    连接OC,根据切线的性质可得,利用三角形内角和定理可得,根据邻补角得出,再由同弧所对的圆周角是圆心角的一半得出,利用等边对等角及三角形内角和定理即可得出结果.

    【详解】

    解:连接OC,如图所示:

    CE相切,

    故选:C.

    【点睛】

    题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.

    8、D

    【解析】

    【分析】

    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.

    【详解】

    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过

    设半径为r,即OA=OB=AB=r

    OM=OA•sin∠OAB=

    ∵圆O的内接正六边形的面积为(cm2),

    ∴△AOB的面积为(cm2),

    解得r=4,

    故选:D.

    【点睛】

    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.

    9、A

    【解析】

    【分析】

    由三角形内角和以及内心定义计算即可

    【详解】

    又∵OABC的内心

    OBOC角平分线,

    180°=180°-50°=130°

    故选:A.

    【点睛】

    本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.

    10、B

    【解析】

    【分析】

    根据三角形内心的性质得到∠OBC=ABC=25°,∠OCB=ACB=37°,然后根据三角形内角和计算∠BOC的度数.

    【详解】

    解:∵点OABC的内心,

    OB平分∠ABCOC平分∠ACB

    ∴∠OBC=ABC=×50°=25°,∠OCB=ACB=×74°=37°,

    ∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.

    故选B.

    【点睛】

    本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.

    二、填空题

    1、30

    【解析】

    【分析】

    连接OC,根据切线的性质定理得到∠OCD=90°,根据三角形内角和定理求出∠D

    【详解】

    解:连接OC

    CD为⊙O的切线,

    ∴∠OCD=90°,

    由圆周角定理得,∠COD=2∠A=60°,

    ∴∠D=90°-60°=30°,

    故答案为:30.

    【点睛】

    本题考查的是切线的性质,圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    2、36

    【解析】

    【分析】

    连接OAOBOBAFJ.由正多边形中心角、垂径定理、圆周角定理得出∠AOB=72°,∠BOF=36°,再由等腰三角形的性质得出答案.

    【详解】

    解:连接OAOBOBAFJ

    ∵五边形ABCDE是正五边形,OFBC

    ∴∠AOB72°,∠BOF=AOB=36°,

    ∴∠AOF=∠AOB +∠BOF=108°,

    OAOF

    ∴∠OAF=∠OFA=36°

    故答案为:36.

    【点睛】

    本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题.正n边形的每个中心角都等于

    3、

    【解析】

    【分析】

    正六边形的面积由6个全等的边长为2的等边三角形面积组成,计算一个等边三角形的面积,乘以6即可.

    【详解】

    解:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则OAB是正三角形.

    OA=AB=2,

    AC=AB=1,

    SOAB=ABOC=×2×=

    则正六边形的面积为6×=6

    故答案为:6

    【点睛】

    本题考查了正多边形的面积,等边三角形的性质,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键.

    4、4

    【解析】

    【分析】

    连接OB,利用切线性质,判定三角形POB是直角三角形,利用直角三角形的性质,确定PO的长度即可.

    【详解】

    如图,连接OB

    PB与⊙O相切于点B

    ∴∠PBO=90°,

    ∵∠P=30°,OB=2,

    PO=4,

    故答案为:4.

    【点睛】

    本题考查了切线性质,直角三角形的性质,熟练掌握切线的性质是解题的关键.

    5、∠ABT=∠ATB=45°(答案不唯一)

    【解析】

    【分析】

    根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.

    【详解】

    解:添加条件:∠ABT=∠ATB=45°,

    ∵∠ABT=∠ATB=45°,

    ∴∠BAT=90°,

    又∵AB是圆O的直径,

    AT是圆O的切线,

    故答案为:∠ABT=∠ATB=45°(答案不唯一).

    【点睛】

    本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.

    三、解答题

    1、 (1)见解析

    (2)

    【解析】

    【分析】

    1)要证明DEO的切线,所以连接OD,只要求出∠ODE90°即可解答;

    2)连接BD,利用RtADB的面积加上弓形面积即可求出阴影部分的面积.

    (1)

    证明:连接OD

    ∴∠CAD=∠BAD

    OAOD

    ∴∠OAD=∠ODA

    ∴∠CAD=∠ODA

    AEOD

    ∴∠E+ODE90°,

    DEAC

    ∴∠E90°,

    ∴∠ODE180°﹣∠E90°,

    OD是圆O的半径,

    DEO的切线;

    (2)

    连接BD

    ABO的直径,

    ∴∠ADB90°,

    ∵∠ADE60°,∠E90°,

    ∴∠CAD90°﹣∠ADE30°,

    ∴∠DAB=∠CAD30°,

    AB2BD

    BD2BA=4

    ODOB2

    ∴△ODB是等边三角形,

    ∴∠DOB60°,

    ∴△ADB的面积=ADDB

    ×2×2

    2

    OAOB

    ∴△DOB的面积=ADB的面积=

    ∴阴影部分的面积为:

    ADB的面积+扇形DOB的面积﹣△DOB的面积

    2

    ∴阴影部分的面积为:

    【点睛】

    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.

    2、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)根据切线的判定方法,证出即可;

    (2)由勾股定理得,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.

    (1)

    解:如图,连接OB

    AB的切线,

    ,即

    BC是弦,

    ,在中,

    ,即

    AC的切线;

    (2)

    解:在中,

    由勾股定理得,

    中,

    【点睛】

    本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.

    3、 (1)见解析

    (2)

    【解析】

    【分析】

    (1)连接OC,由题意得,根据等边对等角得,即可得,则,即可得;

    (2)根据三角形的外角定理得,又根据是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.

    (1)

    证明:如图所示,连接OC

    AB的直径,直线l相切于点A

    ∴直线DC的切线.

    (2)

    解:∵

    又∵

    是等边三角形,

    中,

    ∴阴影部分的面积=

    【点睛】

    本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.

    4、 (1)见解析

    (2)4,

    【解析】

    【分析】

    (1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;

    (2)设⊙O的半径为R,在RtOAE中,勾股定理求出R, 延长CO交⊙OF,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.

    (1)

    证明:连接OA

        

    ∴∠AOC+∠OAD=180°,

    ∵∠AOC=2∠ABC=2×45°=90°,

    ∴∠OAD=90°,    

    OAAD      

    OA是半径,

    AD是⊙O的切线.         

    (2)

    解:设⊙O的半径为R,则OA=ROE=R-2.

    RtOAE中,

    解得(不合题意,舍去),

    延长CO交⊙OF,连接AF

    ∵∠AEF=∠CEB,∠B=∠AFE

    ∴△CEB∽△AEF

          

    CF是直径,

    CF=8,∠CAF=90°,

    又∵∠F=∠ABC=45°,

     ∴∠F=∠ACF=45°,

    AF=

        

    BC=    

    【点睛】

    此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.

    5、 (1)证明见解析

    (2)⊙O半径的长为

    【解析】

    【分析】

    (1)根据角度的数量关系,可得,即,进而可证的切线;

    (2)由题意知,由可得的值,由,得,在中,,求解即可.

    (1)

    证明:∵的直径

    的切线;

    (2)

    解:∵

    中,,即

    半径长为

    【点睛】

    本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.

     

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀达标测试: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀达标测试,共35页。试卷主要包含了如图,PA等内容,欢迎下载使用。

    冀教版第29章 直线与圆的位置关系综合与测试精品课堂检测: 这是一份冀教版第29章 直线与圆的位置关系综合与测试精品课堂检测,共34页。试卷主要包含了在平面直角坐标系中,以点,在中,,,给出条件等内容,欢迎下载使用。

    初中数学第29章 直线与圆的位置关系综合与测试优秀同步达标检测题: 这是一份初中数学第29章 直线与圆的位置关系综合与测试优秀同步达标检测题,共32页。试卷主要包含了如图所示,在的网格中,A,下面四个结论正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map