


初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题,共17页。试卷主要包含了一元二次方程的解为,用配方法解方程,则方程可变形为等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.42、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )A.20% B.25% C.50% D.62.5%3、如图,在一块长为30m,宽为20m的矩形地面上,要修建同样宽的两条互相垂直的道路,剩余部分种上草坪,使草坪面积为300m2,若设道路宽为xm,则根据题意可列方程为( )
A. B.C. D.4、一元二次方程的解为( )A., B., C., D.,5、用配方法解方程,则方程可变形为( )A. B. C. D.6、若关于x的一元二次方程的一根为1,则k的值为( ) .A.1 B. C. D.07、在等式①;②;③;⑤;⑤中,符合一元二次方程概念的是( )A.①⑤ B.① C.④ D.①④8、用配方法解一元二次方程x2﹣10x+21=0,下列变形正确的是( )A.(x﹣5)2=4 B.(x+5)2=4 C.(x﹣5)2=121 D.(x+5)2=1219、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )A.5 B.3 C.-3 D.-410、一元二次方程的解是( ).A.5 B.-2 C.-5或2 D.5或-2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x的一元二次方程(k+1)x2+2x﹣1=0有实数根,则k的取值范围是 _____.2、已知中,,,,则的面积是________.3、一元二次方程3x2=3﹣2x的根的判别式的值为 _____.4、已知是关于的方程的一个根,则______.5、关于的一元二次方程有一个根为1,则的值为________.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)x2+4x﹣1=0 (2)x(x-2)+x-2=02、已知关于的一元二次方程.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于2,求的取值范围.3、解方程:(1)x2﹣6x﹣4=0;(2)3x(x+1)=3x+3.4、解方程:(1)x2+8x-2=0; (2)2(2x+3)2-(2x+3)-1=0.5、计算:(1)3x2+3=7x;(用配方法解方程)(2)4y(3﹣y)=(y﹣3)2. -参考答案-一、单选题1、D【分析】先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.【详解】解: ,,,故甲出现错误; 即 或 故乙出现了错误;而丙解方程时,移项没有改变符号,丁出现了计算错误;所以出现错误的人数是4人,故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.2、C【分析】设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.【详解】解:设该商店销售额平均每月的增长率为x,依题意得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).∴该商店销售额平均每月的增长率为50%.故选:C.【点睛】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.3、B【分析】根据题意草坪的长为m,宽为m,根据长方形的面积公式列出一元二次方程即可【详解】解:设道路宽为xm,则根据题意可列方程为故选B【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.4、A【分析】根据因式分解法即可求解.【详解】∴x-1=0或x-3=0∴,故选A.【点睛】此题主要考查解一元二次方程的求解,解题的关键是熟知因式分解法的运用.5、D【分析】根据配方法解一元二次方程步骤变形即可.【详解】∵∴∴∴∴故选:D.【点睛】本题考查了配方法解一元二次方程,具体步骤为(1)化二次项系数为1. 当二次项系数不是1时,方程两边同时除以二次项系数(2)加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此方程的等式关系不变,故在右侧同时加上一次项系数一半的平方(3)配方后将原方程化为的形式,再用直接开平方的方法解方程.6、B【分析】把方程的根代入方程可以求出k的值.【详解】解:把1代入方程有:
1+2k+1=0,
解得:k=-1,
故选:B.【点睛】本题考查的是一元二次方程的解,正确理解题意是解题的关键.7、B【分析】根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分析判断即可.【详解】解:①,是一元二次方程,符合题意;②,不是方程,不符合题意;③,不是整式方程,不符合题意;⑤,是二元一次方程,不符合题意;⑤,是一元一次方程,不符合题意故符合一元二次方程概念的是①故选B【点睛】本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键.8、A【分析】利用配方法,方程的两边同时加上一次项系数一半的平方,即可求解.【详解】解:x2﹣10x+21=0,移项得: ,方程两边同时加上25,得: ,即 .故选:A【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握利用配方法,需要方程的两边同时加上一次项系数一半的平方是解题的关键.9、A【分析】根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.【详解】解:∵一元二次方程的两根分别为m,n,∴,,∴,故选:A.【点睛】本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.10、D【分析】直接把原方程化为两个一次方程或,再解一次方程即可.【详解】解: 或 解得: 故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“因式分解法解一元二次方程的步骤”是解本题的关键.二、填空题1、且【分析】利用一元二次方程的定义和根的判别式的意义得到k+1≠0且Δ=22﹣4×(k+1)×(﹣1)≥0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得k+1≠0且Δ=22﹣4×(k+1)×(﹣1)≥0,解得k≥﹣2且k≠﹣1.故答案为:k≥﹣2且k≠﹣1.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式等知识,是重要考点,难度较小,掌握相关知识是解题关键.2、或【分析】如图所示,过点C作CE⊥AB于E,先根据含30度角的直角三角形的性质和勾股定理求出,设,则,,由,得到,由此求解即可.【详解】解:如图所示,过点C作CE⊥AB于E,∴∠CEB=∠CEA=90°,∵∠ABC=60°,∴∠BCE=30°,∴BC=2BE,∴,设,则,,∵,∴,解得或,∴或,∴或,故答案为:或.【点睛】本题主要考查了勾股定理和含30度角的直角三角形的性质,解一元二次方程,解题的关键在于能够熟练掌握含30度角的直角三角形的性质.3、40【分析】先把一元二次方程化为一般式,然后利用一元二次方程根的判别式直接计算即可解答.【详解】解:∵,∴,∴,,,,故答案为:40.【点睛】本题考查一元二次方程根的判别式,熟练掌握该知识点是解题关键.4、2025【分析】把代入方程可得再把化为,再整体代入求值即可.【详解】解: 是关于的方程的一个根, 故答案为:【点睛】本题考查的是方程的解,求解代数式的值,掌握“利用整体代入法求解代数式的值”是解本题的关键.5、-5【分析】直接利用一元二次方程的解的意义将x=1代入求出答案.【详解】解:∵关于x的一元二次方程的一个根是1,
∴12+m+4=0,
解得:m=-5.
故答案是:-5.【点睛】此题主要考查了一元二次方程的解,正确理解一元二次方程解的意义是解题关键.三、解答题1、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=2,x2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.【详解】解:(1)∵x2+4x﹣1=0,∴a=1,b=4,c=﹣1,∵△=16+4=20,∴x=,∴,;(2)x(x-2)+x-2=0,因式分解得:(x﹣2)(x+1)=0,可得x﹣2=0或x+1=0,解得:x1=2,x2=﹣1.【点睛】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.2、(1)证明见解析;(2).【分析】(1)根据方程的系数结合根的判别式,可得△=(k−4)2≥0,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x1=4,x2=k,根据方程有一根小于2,即可得出k的取值范围.【详解】(1)∵,∴△=,∴方程总有两个实数根.(2)∵,∴,解得:,,∵该方程有一个根小于2,∴.【点睛】本题考查了根的判别式、因式分解法解一元二次方程,利用因式分解法解一元二次方程表示出方程的两个根,熟练掌握当△≥0时,方程有两个实数根是解题关键.3、(1)x1=+3,x2=-+3(2)x1=-1,x2=1【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2﹣6x﹣4=0x2﹣6x+9=13(x-3)2=13x-3=±∴x1=+3,x2=-+3(2)3x(x+1)=3x+33x(x+1)-3(x+1)=03(x+1)(x-1)=0∴x+1=0或x-1=0∴x1=-1,x2=1.【点睛】此题主要考查解一元二次方程,解题的关键是熟知配方法与因式分解法的运用.4、(1)x1=-4+3,x2=-4-3;(2)x1=-1,x2=.【分析】(1)通过移项配方,求出方程的解即可;
(2)分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:(1)x2+8x-2=0,移项得:x2+8x=2,配方得:x2+8x+16=2+16,即 (x+4)2=18,∴x1=-4+3,x2=-4-3;(2)2(2x+3)2-(2x+3)-1=0因式分解得:[(2x+3)-1][2(2x+3)+1]=0,即:(2x+2)(4x+7)=0,∴x1=-1,x2=.【点睛】本题考查了解一元二次方程,掌握因式分解法以及配方法解方程是解题的关键.5、(1),;(2),【分析】(1)先移项,再方程两边都除以3,再根据完全平方公式配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可.【详解】解:(1)3x2+3=7x,移项,得3x2﹣7x=﹣3,除以3,得x2﹣ x=﹣1,配方,得x2﹣x+()2=﹣1+()2,即(x﹣)2=,开方,得x﹣=,解得:x1=,x2=;(2)4y(3﹣y)=(y﹣3)2,移项,得﹣4y(y﹣3)﹣(y﹣3)2=0,(y﹣3)(﹣4y﹣y+3)=0,y﹣3=0或﹣4y﹣y+3=0,解得:y1=3,.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并根据方程的特征选用合适的方法是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共18页。试卷主要包含了如图,某学校有一块长35米,已知方程的两根分别为m等内容,欢迎下载使用。
这是一份2020-2021学年第十六章 一元二次方程综合与测试习题,共18页。试卷主要包含了已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共16页。试卷主要包含了不解方程,判别方程的根的情况是,已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
