终身会员
搜索
    上传资料 赚现金

    最新京改版七年级数学下册第七章观察、猜想与证明专题测评试题(含解析)

    立即下载
    加入资料篮
    最新京改版七年级数学下册第七章观察、猜想与证明专题测评试题(含解析)第1页
    最新京改版七年级数学下册第七章观察、猜想与证明专题测评试题(含解析)第2页
    最新京改版七年级数学下册第七章观察、猜想与证明专题测评试题(含解析)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题

    展开

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了下列说法正确的个数是,如图,下列命题是真命题的是等内容,欢迎下载使用。
    京改版七年级数学下册第七章观察、猜想与证明专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列各图中,∠1与∠2是对顶角的是(      A.  B. C.  D.2、若的补角是125°,则的余角是(    A.90° B.54° C.36° D.35°3、以下命题是假命题的是(    A.的算术平方根是2B.有两边相等的三角形是等腰三角形C.三角形三个内角的和等于180°D.过直线外一点有且只有一条直线与已知直线平行4、已知∠A=37°,则∠A的补角等于(  )A.53° B.37° C.63° D.143°5、下列说法正确的个数是(  )①平方等于本身的数是正数;②单项式﹣π2x3y2的次数是7;③近似数7与7.0的精确度不相同;④因为ab,所以|a|>|b|;⑤一个角的补角大于这个角本身.A.1个 B.2个 C.3个 D.4个6、如图,下列条件中,不能判断的是(    A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠47、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为(  )A.75°14′ B.59°86′ C.59°46′ D.14°46′8、如图:O为直线AB上的一点,OC为一条射线,OD平分OE平分,图中互余的角共有(    A.1对 B.2对 C.4对 D.6对9、下列命题是真命题的是(  )A.等角的余角相等 B.同位角相等C.互补的角一定是邻补角 D.两个锐角的和是钝角10、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有(  )A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABCDEF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.2、如图,直线ab被直线c所截,ab,∠1=60°,则∠2的度数为________.3、如图,已知∠BOA=90°,直线CD经过点O, 若∠BOD:∠AOC=5:2,则∠AOC=_______.4、填写推理理由:如图,CDEF,∠1=∠2.求证:∠3=∠ACB证明:∵CDEF∴∠DCB=∠2________.∵∠1=∠2,∴∠DCB=∠1________.GDCB________.∴∠3=∠ACB________.5、若互余,且,则______.三、解答题(5小题,每小题10分,共计50分)1、如图,直线ABCD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.(1)求∠DOE的度数;(2)若∠EOF是直角,求∠COF的度数.2、如图所示,MN是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?3、如图,直线ABCD相交于点OOE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数4、如图,己知ABDCACBCAC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵ABDC     ),∴∠B+∠DCB=180°(      ).∵∠B=(      )(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.ACBC(已知),∴∠ACB=(      )(垂直的定义).∴∠2=(      ).ABDC(已知),∴∠1=(      )(      ).AC平分∠DAB(已知),∴∠DAB=2∠1=(      )(角平分线的定义).ABDC(己知),∴(      )+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB     5、完成下面的证明.如图,已知ADBCEFBC,∠1=∠2,求证:∠BAC+∠AGD=180°.证明:∵ADBCEFBC(已知),∴∠EFB=90°,∠ADB=90°(      ),∴∠EFB=∠ADB(等量代换),EFAD      ),∴∠1=∠BAD      ),又∵∠1=∠2(已知),∴∠2=∠   (等量代换),DGBA(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(      ). ---------参考答案-----------一、单选题1、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
    故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.2、D【分析】根据题意,得=180°-125°的余角是90°-(180°-125°)=125°-90°,选择即可.【详解】的补角是125°=180°-125°的余角是90°-(180°-125°)=125°-90°=35°故选D【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.3、A【分析】分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.【详解】解:A、的算术平方根应该是, A是假命题,B、有两边相等的三角形是等腰三角形,B是真命题,C、三角形三个内角的和等于180°,C是真命题,D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,故选:A.【点睛】本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.4、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.5、A【分析】根据平方等于本身的数是0和1,即可判断①;根据单项式次数的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数,即可判断②;根据近似数的精确度可以判断③;根据绝对值的定义可以判断④;根据补角的定义:如果两个角的和为180度,那么这两个角互补即可判断⑤.【详解】解:①平方等于本身的数是1和0,故此说法错误;②单项式﹣π2x3y2的次数是5,故此说法错误;③近似数7精确到个位,近似数7.0精确到十分位,两者的精确度不相同,故此说法正确;④因为ab,不一定有 |a|>|b|,如1>-2,但是|1|<|-2|,故此说法错误;⑤一个角的补角可能大于等于或小于这个角本身,故此说法错误;故选A.【点睛】本题主要考查了有理数的乘方,绝对值,单项式次数,补角和近似数,解题的关键在于能够熟练掌握相关知识进行求解.6、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:,内错角相等,,故本选项错误,不符合题意;,同位角相等,,故本选项错误,不符合题意;,同旁内角互补,,故本选项错误,不符合题意;,它们不是内错角或同位角,的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.7、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C.【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.8、C【分析】根据余角的定义求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.【详解】解:∵OD平分OE平分又∵,即∴互余的角共有4对.故选:C.【点睛】此题考查了余角的定义,角平分线的概念等知识,解题的关键是熟练掌握余角的定义.余角:如果两个角相加等于90°,那么这两个角互为余角.9、A【分析】由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.【详解】解:等角的余角相等,正确,是真命题,故A符合题意,两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;故选:A【点睛】本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.10、C【分析】根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.【详解】解:①平面内,垂直于同一条直线的两直线平行,是真命题;②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;③垂线段最短,是真命题;④两直线平行,同旁内角互补,是假命题,∴真命题有3个,故选C.【点睛】本题主要考查了判断命题真假,熟知相关知识是解题的关键.二、填空题1、50°【分析】ABCDEF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵ABCDEF∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.2、120°【分析】要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.【详解】解:∵ab,∠1=60°,∴∠3=120°,∴∠2=∠3=120°.故答案为:120°【点睛】考查了平行线的性质,本题应用的知识点为:两直线平行,同旁内角互补的性质及对顶角相等的性质.3、60°度【分析】根据一个角的余角与这个角的补角的关系,可得∠BOD与∠AOC的关系,从而列方程,可得答案.【详解】解:∵∠AOC+∠BOC=90°,∠BOD+∠BOC=180°,∴∠BOD=∠AOC+90°,∵∠BOD:∠AOC=5:2,∴∠BOD=AOCAOC=∠AOC+90°,解得∠AOC=60°,故答案为:60°.【点睛】本题考查了角的计算,解一元一次方程的应用,掌握利用一个角的余角与这个角的补角的关系是解题关键.4、两直线平行,同位角相等    等量代换    内错角相等,两直线平行    两直线平行,同位角相等    【分析】根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出【详解】证明:(两直线平行,同位角相等).(等量代换)(内错角相等,两直线平行).(两直线平行,同位角相等).故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.【点睛】题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.5、69°【分析】由题意可设∠α=2x,∠β=3x,根据互余可得关于x的方程,解方程即可求出x,然后代值计算即可;【详解】解:因为所以设∠α=2x,∠β=3x因为互余,所以2x+3x=90°,解得x=18°,所以∠α=36°,∠β=54°,所以故答案为69°.【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.三、解答题1、(1);(2)【解析】【分析】(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;(2)先求解 再利用平角的定义可得答案.【详解】解:(1)AOC:∠AOD=3:7, OE平分∠BOD (2) 【点睛】本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.2、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角【解析】【分析】根据对顶角和邻补角的定义求解即可.【详解】解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.【点睛】此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。3、55°【解析】【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,OE平分∠BOC∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.4、见解析.【解析】【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.【详解】解:∵(已知),(两直线平行,同旁内角互补).(已知),(已知),(垂直的定义).(已知),(两直线平行,内错角相等).平分(已知),(角平分线的定义).(己知),(两条直线平行,同旁内角互补).【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.5、垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【解析】【分析】先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到,再根据等量代换得出,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定.【详解】解:∵ADBCEFBC(已知),∴∠EFB=90°,∠ADB=90°(垂直的定义),∴∠EFB=∠ADB(等量代换),EFAD(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠2=∠BAD(等量代换),DGBA(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【点睛】本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键. 

    相关试卷

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时作业:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时作业,共23页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。

    2021学年第七章 观察、猜想与证明综合与测试精练:

    这是一份2021学年第七章 观察、猜想与证明综合与测试精练,共23页。试卷主要包含了下列说法中正确的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。

    2021学年第七章 观察、猜想与证明综合与测试一课一练:

    这是一份2021学年第七章 观察、猜想与证明综合与测试一课一练,共19页。试卷主要包含了下列命题是假命题的有,如图,直线AB,若的余角为,则的补角为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map