


初中数学北京课改版七年级下册第六章 整式的运算综合与测试巩固练习
展开这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试巩固练习,共17页。试卷主要包含了已知,,则,下列计算正确的有,已知下列一组数,一同学做一道数学题等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.0不是单项式 B.单项式xy的次数是1
C.单项式的系数是 D.多项式的一次项次数是—1
2、如图是某月份的日历,那么日历中同一竖列相邻三个数的和不可能是( )
A.39 B.51 C.53 D.60
3、如果多项式xm-3+5x-3是关于x的三次三项式,那么m的值为( )
A.0 B.3 C.6 D.9
4、已知,,则( )
A.2 B.3 C.9 D.18
5、小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab=4a2b+2ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )
A.(2a+b2) B.(a+2b) C.(3ab+2b2) D.(2ab+b2)
6、下列计算正确的有( )
① ② ③ ④
A.3个 B.2个 C.1个 D.0个
7、已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是( )
A. B. C. D.
8、一同学做一道数学题:“已知两个多项式,,其中,求”,这位同学却把看成,求出的结果是,那么多项式是( )
A. B.
C. D.
9、下列各式中,能用平方差公式计算的是( )
A.(a+b)(﹣a﹣b) B.(a+b)(a﹣b)
C.(a+b)(a﹣d) D.(a+b)(2a﹣b)
10、用大小相等的小正方形按一定规律拼成下列图形,则第个图形中正方形的个数是( )
A.10 B.240 C.428 D.572
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,,则的值为________________.
2、单项式﹣xy2的系数为 _____.
3、已知代数式的值是7,则代数式的值是_______.
4、减去等于的多项式是______.
5、对a,b,c,d定义一种新运算:,如,计算_________.
三、解答题(5小题,每小题10分,共计50分)
1、阅读材料:若满足,求的值.
解:设,,则,,
所以
请仿照上例解决下面的问题:
(1)问题发现:若x满足,求的值;
(2)类比探究:若x满足.求的值;
(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).
2、马虎同学在计算A﹣(ab﹣2bc+4ac﹣3)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc.
(1)请你帮助马虎同学求出这道题的正确结果;
(2)当字母a和b满足什么关系时,正确的计算结果与字母c的取值无关.
3、已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.
4、先化简,再求值:
;其中,.
5、已知A,B是关于x的整式,其中,.
(1)化简A+2B;
(2)当x=2时,A+2B的值为﹣5,求式子3n-3m+9的值.
---------参考答案-----------
一、单选题
1、C
【分析】
根据单项式的判断,单项式的系数与次数,多项式的次数、项数等概念逐项分析判断即可
【详解】
解:A. 0是单项式,故该选项不正确,不符合题意;
B. 单项式xy的次数是2,故该选项不正确,不符合题意;
C. 单项式的系数是,故该选项正确,符合题意;
D. 多项式的一次项次数是2,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了单项式的判断,单项式的系数与次数,多项式的次数、项数等概念,掌握以上知识是解题的关键.单项式中,所有字母的指数和叫单项式的次数,数字因数叫单项式的系数,单项式中所有字母的指数的和叫做它的次数,通常系数不为0,应为有理数, 多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.
2、C
【分析】
设中间的数为,日历中同一竖列相邻三个数分别为 ,进而求得三个数的和为,由为整数可知三个数的和为3的倍数,据此求解即可
【详解】
设中间的数为,日历中同一竖列相邻三个数分别为
三个数的和为,即为3的倍数,4个选项中只有53不是3的倍数,
故选C
【点睛】
本题考查了列代数式,整式的加减的应用,求得三个数的和是3的倍数是解题的关键.
3、C
【分析】
直接利用多项式的定义得出m-3=3,进而求出即可.
【详解】
解:∵整式xm-3+5x-3是关于x的三次三项式,
∴m-3=3,
解得:m=6.
故选:C.
【点睛】
本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.
4、D
【分析】
根据同底数幂的乘法逆运算进行整理,再代入求值即可.
【详解】
解:∵,,
∴.
故选:D.
【点睛】
本题主要考查求代数式的值,同底数幂乘法的逆用,解题的关键是把式子整理成整体代入的形式.
5、A
【分析】
根据多项式除单项式的运算法则计算即可.
【详解】
∵(4a2b+2ab3)÷2ab=2a+b2,
∴被墨汁遮住的一项是2a+b2.
故选:A.
【点睛】
本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.
6、B
【分析】
括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.
【详解】
解:,所以正确,符合题意;
,所以错误,不符合题意;
,所以错误,不符合题意;
,所以正确,符合题意.
故选B.
【点睛】
本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.
7、B
【分析】
根据题意仔细观察给出的数字,找出其中存在的规律从而解题即可.
【详解】
解:∵1=;
;
;
∴第n个数是:.
故选:B.
【点睛】
本题考查数字找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
8、A
【分析】
由,,代入计算即可求出A的值.
【详解】
解:∵,
由题意知:,
则:A=,
A=,
=,
故选:A
【点睛】
本题主要考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.
9、B
【分析】
根据平方差公式(a+b)(a﹣b)=a2﹣b2对各选项分别进行判断.
【详解】
解:A、(a+b)(﹣a﹣b)=﹣(a+b)(a+b)两项都相同,不能用平方差公式计算.故本选项不符合题意;
B、(a+b)(a﹣b)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;
C、(a+b)(a﹣d)中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;
D、(a+b)(2a﹣b)中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;
故选:B.
【点睛】
本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
10、D
【分析】
由第一个图形中有:个正方形;第二个图形中有:个正方形,第三个图形有:个正方形,可以推出第n个图形有,由此求解即可.
【详解】
解:第一个图形中有:个正方形;
第二个图形中有:个正方形,
第三个图形有:个正方形,
∴可以推出第n个图形有,
∴第 11 个图形中正方形的个数是
个正方形,
故选D.
【点睛】
本题主要考查了图形类的规律探索,解题的挂件在于能够根据题意找到规律求解.
二、填空题
1、19
【分析】
根据公式=计算.
【详解】
∵,
∴=,
∴==19,
故答案为:19.
【点睛】
本题考查了完全平方公式的变形应用,灵活进行公式变形是解题的关键.
2、
【分析】
根据单项式的系数的定义即可求解.
【详解】
单项式﹣xy2的系数为
故答案为:.
【点睛】
此题主要考查单项式的系数,解题的关键是熟知单项式的系数的定义:指单项式中字母前面的数.
3、4
【分析】
根据题意,可先求出x2+3x的值,然后整体代入所求代数式求值即可.
【详解】
解:∵=7,
∴x2+3x=2,
则3(x2+3x)=6,
∴3x2+9x-2=3(x2+3x)-2=4.
故答案为:4.
【点睛】
本题考查了代数式求值,解题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+3x的值,然后利用“整体代入法”求代数式的值.
4、
【分析】
根据差+减数=被减数,计算即可得到结果.
【详解】
解:根据题意得:=,
故答案为:.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
5、
【分析】
根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.
【详解】
解:.
故答案为:.
【点睛】
本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.
三、解答题
1、(1)21;(2)1009.5;(3)900
【解析】
【分析】
(1)令a=3-x,b=x-2,整体代入后利用完全平方和公式求解;
(2)令a=2021-x,b=2020-x,再利用完全平方差公式求代数式的值;
(3)设a=x-20,b=x-10,由题意列出方程ab=200,再结合正方形和矩形的面积公式求四边形MFNP的面积.
【详解】
解:(1)设a=3-x,b=x-2,
∴ab=-10,a+b=1,
∴(3-x)2+(x-2)2,
=a2+b2
=(a+b)2-2ab
=12-2×(-10)
=21;
(2)设a=2022-x,b=2021-x,
∴a-b=1,a2+b2=2020,
∴=ab=−[(a−b)2−(a2+b2)]=−×(12−2020)=1009.5;
(3)∵EF=DG=x-20,ED=FG=x-10,
∵四边形MEDQ与NGDH为正方形,四边形QDHP为长方形,
∴MF=EF+EM=EF+ED=(x-20)+(x-10),FN=FG+GN=FG+GD,
∴FN=(x-10)+(x-20),
∴MF=NF,
∴四边形MFNP为正方形,
设a=x-20,b=x-10,
∴a-b=-10,
∵SEFGD=200,
∴ab=200,
∴SMFNP=(a+b)2=(a-b)2+4ab=(-10)2+4×200=900.
【点睛】
本题考查了整体思想和完全平方公式的应用,在解题的时候关键是用换元的方法将给定的式子和所求的式子进行替换,这样会更加容易看出来已知条件和所求之间的关系.
2、(1)ab−10ac+9bc+6;(2)当b=a时,正确的计算结果与字母c的取值无关.
【解析】
【分析】
(1)先根据题意列出整式相加减的式子进行计算即可.
(2)将ab−10ac+9bc+6写成(9b−10a)c+ab+6,即可得到当b=a时,正确的计算结果与字母c的取值无关.
【详解】
解:(1)由题意得,(3ab−2ac+5bc)−2(ab−2bc+4ac−3)
=3ab−2ac+5bc−2ab+4bc−8ac+6
=ab−10ac+9bc+6,
∴正确结果为:ab−10ac+9bc+6;
(2)ab−10ac+9bc+6=(9b−10a)c+ab+6,
由题可得,9b−10a=0,
∴b=a,
∴当b=a时,正确的计算结果与字母c的取值无关.
【点睛】
本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.
3、3
【解析】
【分析】
先去括号,然后合并同类项化简,最后将已知式子的值代入求解即可.
【详解】
解:,
,
,
,
当,时,
原式,
.
【点睛】
题目主要考查整式的化简求值,熟练掌握整式的化简方法是解题关键.
4、x2y+5xy2,42.
【解析】
【分析】
先运用去括号法则去括号,然后合并同类项,化简整式,最后代入求值即可.
【详解】
解:原式=4x2y-xy2-3x2y+6xy2=x2y+5xy2.
当x=3,y=-2时,
原式=32(-2)+53(-2)2=-18+60=42.
【点睛】
本题考查了整式加减的化简求值.去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.
5、(1);(2)
【解析】
【分析】
(1)根据整式加减运算的性质计算,即可得到答案;
(2)结合(1)的结论,通过移项并合并同类项,得,结合代数式的性质计算,即可得到答案.
【详解】
(1)
;
(2)根据题意,得:
去括号,得:
移项、合并同类项,得:
∴,即
∴.
【点睛】
本题考查了整式加减运算、代数式的知识;解题的关键是熟练掌握整式加减运算的性质,从而完成求解.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了下列计算正确的是,下列式子正确的是,下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课时练习,共16页。试卷主要包含了下列计算正确的是,多项式+1的次数是,已知,,则,下列运算正确的是,若,,求的值是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试一课一练,共17页。试卷主要包含了下列表述正确的是,下列结论中,正确的是,若,,求的值是等内容,欢迎下载使用。