


初中数学沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试当堂达标检测题,共17页。试卷主要包含了下列说法错误的是,下列说法正确的是,下列事件中,属于必然事件的是,在一个不透明的布袋中,红色等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、关于“明天是晴天的概率为90%”,下列说法正确的是( ).
A.明天一定是晴天 B.明天一定不是晴天
C.明天90%的地方是晴天 D.明天是晴天的可能性很大
2、以下事件为随机事件的是( )
A.通常加热到100℃时,水沸腾
B.篮球队员在罚球线上投篮一次,未投中
C.任意画一个三角形,其内角和是360°
D.半径为2的圆的周长是
3、 “翻开数学书,恰好翻到第16页”,这个事件是( )
A.随机事件 B.必然事件 C.不可能事件 D.确定事件
4、下列说法错误的是( )
A.必然事件发生的概率是1 B.不可能事件发生的概率为0
C.随机事件发生的可能性越大,它的概率就越接近1 D.概率很小的事件不可能发生
5、下表记录了一名球员在罚球线上投篮的结果:
投篮次数 | 50 | 100 | 150 | 200 | 250 | 400 | 500 | 800 |
投中次数 | 28 | 63 | 87 | 122 | 148 | 242 | 301 | 480 |
投中频率 | 0.560 | 0.630 | 0.580 | 0.610 | 0.592 | 0.605 | 0.602 | 0.600 |
根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )
A.0.560 B.0.580 C.0.600 D.0.620
6、下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.“心想事成,万事如意”描述的事件是随机事件
D.天气预报显示明天为阴天,那么明天一定不会下雨
7、下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.抛一枚硬币,正面朝上
C.五个人分成四组,这四组中有一组必有2人
D.打开电视,正在播放动画片
8、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )
A.24 B.18 C.16 D.6
9、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:
摸球的次数 | 200 | 300 | 400 | 1000 | 1600 | 2000 |
摸到黑球的频数 | 142 | 186 | 260 | 668 | 1064 | 1333 |
摸到黑球的频率 | 0.7100 | 0.6200 | 0.6500 | 0.6680 | 0.6650 | 0.6665 |
该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.
A.4 B.3 C.2 D.1
10、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同.从袋子中任意摸出1个球,摸到标号大于2的概率是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______.
2、只有1和它本身两个因数且大于1的自然数叫做质数,我国数学家陈景润在有关质数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从3,5,7,11,13,23这6个质数中随机抽取一个,则抽到个位数是3的可能性是________.
3、现有四张分别标有数字﹣2,﹣1,0,2的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽取一张,记下数字不放回,然后背面朝上洗匀,再随机抽取一张,则两次抽出的卡片上所标数字之和为正数的概率是 _____.
4、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.
5、一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _____个.
三、解答题(5小题,每小题10分,共计50分)
1、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.
(1)王老师被分配到“就餐监督岗”的概率为 ;
(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.
2、电影《长津湖》以抗美援朝战争第二次战役中的长津湖战役为背景,讲述71年前,中国人民志愿军赴朝作战,在极寒严酷环境下,东线作战部队凭着钢铁意志和英勇无畏的战斗精神一路追击,奋勇杀敌的真实历史.为纪念历史,缅怀先烈,我校团委将电影中的四位历史英雄人物头像制成编号为A、B、C、D的四张卡片(除编号和头像外其余完全相同),活动时学生根据所抽取的卡片来讲述他们在影片中波澜壮阔、可歌可泣的历史事迹.规则如下:先将四张卡片背面朝上,洗匀放好,小强从中随机抽取一张,然后放回并洗匀,小叶再从中随机抽取一张.请用列表或画树状图的方法求小强和小叶抽到的两张卡片恰好是同一英雄人物的概率.
3、放假期间,小明和小华准备到白马湖度假区(记为A)、金湖水上森林公园(记为B)、盱眙铁山寺国家森林公园(记为C)的其中一个景点去游览,他们各自在这三个景点中任选一个,每个景点都被选中的可能性相同.
(1)小明选择去白马湖度假区的概率是 .
(2)用树状图或列表的方法求小明和小华分别去不同景点游览的概率.
4、盒中有1枚黑棋和3白棋,这些棋除颜色外无其他差别,某同学一次摸出两枚棋,请通过列表或树状图计算这两枚棋颜色不同的概率.
5、口袋装有3只形状大小一样的球,其中2个球是红色,1个球是白色,规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.甲两次摸到红球获胜,乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由
-参考答案-
一、单选题
1、D
【分析】
根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得.
【详解】
解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,
故选:D.
【点睛】
题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键.
2、B
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.通常加热到100℃时,水沸腾是必然事件;
B.篮球队员在罚球线上投篮一次,未投中是随机事件;
C.任意画一个三角形,其内角和是360°是不可能事件;
D.半径为2的圆的周长是是必然事件;
故选:B.
【点睛】
考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
3、A
【分析】
随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,根据定义逐一判断即可.
【详解】
解:“翻开数学书,恰好翻到第16页”,这个事件是随机事件;
故选A
【点睛】
本题考查的是确定事件与随机事件的概念,确定事件又分为必然事件与不可能事件,掌握“随机事件的概念”是解本题的关键.
4、D
【分析】
根据概率的意义分别判断后即可确定正确的选项.
【详解】
解:A. 必然事件发生的概率是1,故该选项正确,不符合题意;
B. 不可能事件发生的概率是0,故该选项正确,不符合题意;
C. 随机事件发生的可能性越大,它的概率就越接近1,故该选项正确,不符合题意;
D. 概率很小的事件也可能发生,故该选项不正确,符合题意;
故选D
【点睛】
本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.
5、C
【分析】
根据频率估计概率的方法并结合表格数据即可解答.
【详解】
解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,
∴这名球员在罚球线上投篮一次,投中的概率为0.600.
故选:C.
【点睛】
本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.
6、C
【详解】
解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;
C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;
D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;
故选:C
【点睛】
本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
7、C
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、任意购买一张电影票,座位号是奇数是随机事件;
B、抛一枚硬币,正面朝上是随机事件;
C、五个人分成四组,这四组中有一组必有2人是必然事件;
D、打开电视,正在播放动画片是随机事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、A
【分析】
根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.
【详解】
解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.40,
∴口袋中白色球的个数可能是60×0.40=24个.
故选A.
【点睛】
本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.
9、C
【分析】
该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.
【详解】
解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,
估计摸出黑球的概率为0.667,
则摸出绿球的概率为,
袋子中球的总个数为,
由此估出黑球个数为,
故选:C.
【点睛】
本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
10、A
【分析】
根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可
【详解】
解:∵总可能结果有4种,摸到标号大于2的结果有2种,
∴从袋子中任意摸出1个球,摸到标号大于2的概率是
故选A
【点睛】
本题考查了简单概率公式求概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.
二、填空题
1、0.9
【分析】
根据题意可得长方形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积.
【详解】
解:由题意可得:长方形的面积为,
∵骰子落在会徽图案上的频率稳定在0.15左右,
∴会徽图案的面积为:,
故答案为:.
【点睛】
题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键.
2、
【分析】
先利用列举法求出个位数字是3的所有结果数,然后利用概率公式求解即可.
【详解】
解:从3,5,7,11,13,23这6个质数中随机抽取一个数一共有6种等可能性的结果数,其中抽到个位是3的有3,13,23三种结果数,
∴抽到个位数字是3的概率是,
故答案为:.
【点睛】
本题主要考查了概率的计算,熟练掌握列举法进行概率的计算是解决本题的关键.
3、
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽出的卡片所标数字之和为正数的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图如下所示:
由树状图可知,一共有16中等可能性的结果数,其中两次抽出的卡片上所标数字之和为正数的结果数有(-1,2),(0,2),(2,-1),(2,0)四种情况,
∴P两次抽出的卡片上所标数字之和为正数,
故答案为:.
【点睛】
本题主要考查了列表法或树状图法求概率.解题的关键在于能够熟练掌握:概率=所求情况数与总情况数之比.
4、c>a>b
【分析】
根据概率公式分别求出各事件的概率,故可求解.
【详解】
依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,
∵>>
∴a,b,c的大小关系是c>a>b
故答案为:c>a>b.
【点睛】
本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
5、
【分析】
先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.
【详解】
解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,
设口袋中大约有x个白球,则=,
解得x=20,
经检验x=20是原方程的解,
估计口袋中白球的个数约为20个.
故答案为:20.
【点睛】
本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.
三、解答题
1、(1);(2)李老师和王老师被分配到同一个监督岗的概率为.
【分析】
(1)直接利用概率公式计算;
(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.
【详解】
解:(1)因为设立了四个“服务监督岗”: “洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,
∴王老师被分配到“就餐监督岗”的概率=;
故答案为:;
(2)画树状图为:
由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,
∴李老师和王老师被分配到同一个监督岗的概率==.
【点睛】
本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
2、
【分析】
根据题意列出树状图,根据概率公式即可求解.
【详解】
由题意做树状图如下:
故小强和小叶抽到的两张卡片恰好是同一英雄人物的概率为.
【点睛】
此题考查了用列表法或树状图法求概率,解题时要注意此题是放回试验还是不放回试验,用到的知识点为:概率=所求情况数与总情况数之比.
3、(1);(2).
【分析】
(1)直接利用概率公式求解可得.
(2)先画出树状图,根据树状图可以求得所有等可能的结果以及他们分别去不同景点游览的情况,再利用概率公式即可求得答案.
【详解】
解:(1)小明选择去白云山游览的概率是;
故答案为:;
(2)画树状图得:
∵共有9种等可能的结果,小明和小华分别去不同景点游览的情况有6种结果,
∴小明和小华分别去不同景点游览的概率为.
【点睛】
此题考查随机事件的概率计算,涉及到树状图法表示概率的方法.
4、
【分析】
用列表法列举所有可能出现的结果,再找出所求事件可能出现的结果,由即可求出相应概率.
【详解】
如表所示
由表可知共有12种情况,其中摸出两枚棋子的颜色不同的情况有6种
故P=.
【点睛】
当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法,列表法的一般步骤:把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格,把所求事件发生的可能结果都找出来代入计算公式:,当事件的发生只经过两个步骤时,一般用列表法就能将所有的可能结果列举出来,当经过多个步骤时,表格就不够清晰了,而画树状图法的适用面更广,特别是多个步骤时,层次清楚,一目了然.
5、这个游戏对双方是不公平的,理由见解析
【分析】
首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.
【详解】
解:这个游戏对双方是不公平的.
如图,
∵一共有9种情况,两次摸到红球的有4种,摸到一红一白或二白的有5种,
∴P(两个红球)=;P(一红一白)=,概率不相同,那么游戏不公平.
【点睛】
本题考查的是游戏的公平性.解决本题需要正确画出树状图进行解题.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份2020-2021学年第26章 概率初步综合与测试课后测评,共19页。试卷主要包含了下列事件是必然事件的是,下列事件中是不可能事件的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课后测评,共18页。试卷主要包含了若a是从“,下列说法中正确的是,下列事件中,属于随机事件的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试课后复习题,共19页。试卷主要包含了下列说法正确的是.,一个不透明的口袋里有红等内容,欢迎下载使用。