


【历年真题】2022年辽宁省营口市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解)
展开
这是一份【历年真题】2022年辽宁省营口市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共22页。试卷主要包含了下列命题中,是真命题的是,若,则的值是,下列说法中,不正确的是等内容,欢迎下载使用。
2022年辽宁省营口市中考数学考前摸底测评 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列利用等式的性质,错误的是( )A.由,得到 B.由,得到C.由,得到 D.由,得到2、下列图形中,是中心对称图形的是( )A. B. C. D.3、已知,,且,则的值为( )A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或34、下列命题中,是真命题的是( )A.一条线段上只有一个黄金分割点B.各角分别相等,各边成比例的两个多边形相似C.两条直线被一组平行线所截,所得的线段成比例D.若2x=3y,则5、若,则的值是( )A. B.0 C.1 D.20226、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. B. C. D.7、下列说法中,不正确的是( )A.是多项式 B.的项是,,1C.多项式的次数是4 D.的一次项系数是-48、下图中能体现∠1一定大于∠2的是( )A. B.C. D.9、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )A. B. C. D.10、下列四个实数中,无理数是( )A. B.0.131313… C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、今年“五一”小长假铁路上海站迎来客流出行高峰,四天共计发送旅客逾1340000人次,1340000用科学记数法表示为 ________(保留3个有效数字).2、当x___时,二次根式有意义;3、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.4、要使成为完全平方式,那么b的值是______.5、的倒数是________;绝对值等于3的数是________.三、解答题(5小题,每小题10分,共计50分)1、沙坪坝区某街道为积极响应“开展全民义务植树40周年”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共70棵,且甲种树木单价、乙种树木单价每棵分别为90元,80元,共用去资金6000元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6500元,求a的最大整数值.2、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).(1)如图1,在BC上找一点P,使∠BAP=45°;(2)如图2,作△ABC的高BH.3、如图,一次函数的图象与反比例函数的图象交于A,B两点,且与y轴交于点C,点A的坐标为.(1)求m及k的值;(2)求点B的坐标及的面积;(3)观察图象直接写出使反比例函数值大于一次函数值的自变量x取值范围.4、某药店在防治新型冠状病毒期间,购进甲、乙两种医疗防护口罩,已知每件甲种口罩的价格比每件乙种口罩的价格贵8元,用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同.(1)求甲、乙两种口罩每件的价格各是多少元?(2)计划购买这两种口罩共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种口罩?5、 “疫情未结束,防疫绝不放松”.为了了解同学们掌握防疫知识的情况,增强防疫意识,某校开展了“全民行动•共同抗疫”的自我防护知识网上答题竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是94,90,94七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级9290c52八年级92b10050.4八年抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)上述图表中a= ,b= ,c= ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握自我防护知较好?请说明理由(一条理由即可);(3)该校七、八年级共640人参加了此次网上答题竞赛活动,估计参加竞赛活动成绩优秀(x≥90)的学生人数是多少? -参考答案-一、单选题1、B【分析】根据等式的性质逐项分析即可.【详解】A.由,两边都加1,得到,正确;B.由,当c≠0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B.【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.2、B【分析】根据中心对称图形的定义求解即可.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.【详解】解:∵,, ,∴x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1.故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.4、B【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.【详解】解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D.若2x=3y,则,所以D选项不符合题意.故选:B.【点睛】本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.【详解】解:∵,∴a-2=0,b+1=0,∴a=2,b=-1,∴=,故选C.【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.6、C【分析】由数轴可得: 再逐一判断的符号即可.【详解】解:由数轴可得: 故A,B,D不符合题意,C符合题意;故选C【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.7、C【分析】根据多项式的定义及项数、次数定义依次判断.【详解】解:A. 是多项式,故该项不符合题意; B. 的项是,,1,故该项不符合题意; C. 多项式的次数是5,故该项符合题意; D. 的一次项系数是-4,故该项不符合题意; 故选:C.【点睛】此题考查了多项式的定义及项数的定义、次数的定义,正确掌握多项式的各定义是解题的关键.8、C【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.9、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:641200用科学记数法表示为:641200=,故选择B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项.【详解】解:A.,是整数,属于有理数,故本选项不合题意;B.0.131313…是无限循环小数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.是无理数,故本选项符合题意;故选:D.【点睛】题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键.二、填空题1、1.34×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1340000人次,用科学记数法表示为 1.34×106人次,故答案为:1.34×106.【点睛】此题考查科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.2、≥【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,2x+3≥0,解得x≥,故答案为:≥.【点睛】本题考查的知识点为:二次根式的被开方数是非负数,比较基础.3、【分析】如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.【详解】如图,过点O作,∵四边形ABCD是矩形,∴,,,∵,∴,∴,∴,∴,,∴.故答案为:.【点睛】本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.4、【分析】根据完全平方式的性质:,可得出答案.【详解】∵是完全平方式∴解得故答案为.【点睛】本题考查完全平方式,熟记完全平方式的形式,找出公式中的a和b的关键.5、 【分析】根据倒数的定义和绝对值的性质即可得出答案.【详解】解:的倒数是;绝对值等于3的数为±3,故答案为:,±3.【点睛】此题考查了绝对值的性质、倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.三、解答题1、(1)甲种树木购买了40棵,乙种树木购买了30棵(2)a的最大值为25【分析】(1)设甲种树木购买了x棵,乙种树木购买了y棵,根据总费用=单价×数量结合“购买了甲、乙两种树木共70棵,共用去资金6000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总费用=单价×数量结合总费用不超过6500元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.【小题1】解:设甲种树木购买了x棵,乙种树木购买了y棵,根据题意得:,解得:,答:甲种树木购买了40棵,乙种树木购买了30棵.【小题2】根据题意得:90×(1+a%)×40+80×(1-a%)×30≤6500,解得:a≤25.答:a的最大值为25.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.2、(1)见解析;(2)见解析【分析】(1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;(2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.【详解】解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求, 理由如下:根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,∴△ABM≌△BNQ,∴AB=BN,∠ABM=∠BNQ,∴∠BAP=∠BNP,∵∠NBQ+∠BNQ=90°,∴∠ABM +∠BNQ=90°,∴∠ABN=90°,∴∠BAP=∠BNP=45°;(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.理由如下:过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,∴△ACD≌△QBG,∴∠ACD=∠QBG,∵∠QBG+∠BQG=90°,∴∠ACD +∠BQG=90°,∴∠CHQ=90°,∴BH⊥AC,即BH为△ABC的高.【点睛】本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.3、(1)m=﹣3,k=2;(2)(﹣,﹣4),;(3)或.【分析】(1)把A点的坐标代入函数解析式,即可求出答案;(2)解由两函数解析式组成的方程组,求出方程组的解,即可得出B点的坐标,求出C点的坐标,再根据三角形面积公式求即可;(3)求出C的坐标,根据图形即可求出答案.(1)解:∵点A(2,1)在函数y=2x+m的图象上,∴4+m=1,即m=﹣3,∵A(2,1)在反比例函数的图象上,∴,∴k=2;所以m=﹣3,k=2;(2)解:∵一次函数解析式为y=2x﹣3,令x=0,得y=-3,∴点C的坐标是(0,-3),∴OC=3,联立方程组得,得:或,∴点B的坐标为(﹣,﹣4),∴S△AOB=S△AOC+S△BOC=;(3)解:观察图象可知,在第三象限时,在点B左侧或在第一象限时,在点A左侧时,反比例函数值大于一次函数值,故自变量x取值范围为或.【点睛】本题考查了待定系数法求出一次函数和反比例函数的解析式、两函数的交点问题和函数的图象等知识点,能求出两函数的解析式是解此题的关键,用了数形结合思想.4、(1)每件乙种商品的价格为40元,每件甲种商品的价格为48元.(2)最多可购买50件甲种商品.【分析】(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据数量=总价÷单价结合用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购买y件甲种商品,则购买(80-y)件乙种商品,根据总价=单价×购买数量结合投入的经费不超过3600元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最大正整数即可.(1)解:设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据题意得:,解得:x=40,经检验,x=40原方程的解,∴x+8=48.答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.(2)解:设购买y件甲种商品,则购买(80-y)件乙种商品,根据题意得:48y+40(80-y)≤3600,解得:y≤50.答:最多可购买50件甲种商品.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.5、(1)a=40,b=94,c=90和96(2)八年级,理由见解析(3)416人【分析】(1)根据频率=频数÷总数,中位数、众数的计算方法进行计算即可;(2)比较方差的大小得出答案;(3)求出七、八年级优秀人数所占的百分比即可.【小题1】解:八年级10名学生的竞赛成绩在C组中的数据是:94,94,90,∴C组所占的百分比为3÷10×100%=30%,∵1-10%-20%-30%=40%,即a=40,八年级A组的有2人,B组的有1人,C组有3人,D组的有4人,将这10人的成绩从小到大排列,处在中间位置的两个数都是94,因此中位数是94,即b=94,七年级10名学生成绩出现次数最多的是90和96,因此众数是90和96,即c=90和96,故答案为:40,94,90和96;【小题2】八年级学生掌握自我防护知较好,理由:∵七年级的方差为52,八年级的方差是50.4,而52>50.4,∴八年级学生的成绩较为稳定,∴八年级学生掌握自我防护知较好;【小题3】640×=416(人),答:参加竞赛活动成绩优秀(x≥90)的学生人数是416人.【点睛】本题考查中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数以及方差的计算方法是正确解答的关键.
相关试卷
这是一份【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解),共39页。试卷主要包含了若,则下列不等式正确的是,把 写成省略括号后的算式为,下列说法中正确的个数是,某玩具店用6000元购进甲,下列变形中,正确的是等内容,欢迎下载使用。
这是一份【历年真题】2022年唐山迁安市中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共26页。试卷主要包含了下列说法正确的是.,使分式有意义的x的取值范围是,计算3.14-的结果为 .等内容,欢迎下载使用。
这是一份【历年真题】2022年河北保定中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共26页。试卷主要包含了方程的解为,如图,在数轴上有三个点A,下列运算中,正确的是,已知,,,则等内容,欢迎下载使用。