


【历年真题】2022年北京市朝阳区中考数学第三次模拟试题(精选)
展开这是一份【历年真题】2022年北京市朝阳区中考数学第三次模拟试题(精选),共22页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
2022年北京市朝阳区中考数学第三次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中,正确的有( )
①射线AB和射线BA是同一条射线;②若,则点B为线段AC的中点;③连接A、B两点,使线段AB过点C;④两点的所有连线中,线段最短.
A.0个 B.1个 C.2个 D.3个
2、下列判断错误的是( )
A.若,则 B.若,则
C.若,则 D.若,则
3、的相反数是( )
A. B. C. D.3
4、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )
A. B.4 C. D.6
5、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
6、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
7、下列说法正确的是( )
A.等腰三角形高、中线、角平分线互相重合
B.顶角相等的两个等腰三角形全等
C.底角相等的两个等腰三角形全等
D.等腰三角形的两个底角相等
8、如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=108°则∠BAE的度数为( )
A.120° B.108° C.132° D.72°
9、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
10、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,平分,,点到的距离为5.6,则___.
2、一个几何体的侧面展开图如图所示,则该几何体是________.
3、如图,AB,CD是的直径,弦,所对的圆心角为40°,则的度数为______.
4、今年“五一”小长假铁路上海站迎来客流出行高峰,四天共计发送旅客逾1340000人次,1340000用科学记数法表示为 ________(保留3个有效数字).
5、用幂的形式表示:=________.
三、解答题(5小题,每小题10分,共计50分)
1、解下列方程:
(1)
(2)
2、如图,中,,于D,点E在AD上,且.
(1)求证:≌;
(2)判断直线BE和AC的位置关系,并说明理由.
3、如图,在四边形ABCD中,BA=BC,AC⊥BD,垂足为O.P是线段OD上的点(不与点O重合),把线段AP绕点A逆时针旋转得到AQ,∠OAP=∠PAQ,连接PQ,E是线段PQ的中点,连接OE交AP于点F.
(1)若BO=DO,求证:四边形ABCD是菱形;
(2)探究线段PO,PE,PF之间的数量关系.
4、关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根 x1,x2.
(1)求 k 的取值范围;
(2)请问是否存在实数 k,使得 x1+x2=1﹣x1x2 成立?若存在,求出 k 的值;若不存在, 说明理由.
5、为了打造年级体育啦啦队,某年级准备投入一笔资金为啦啦队队员配置一些花球.经过多方比较,准备在甲、乙两个商家中选择一个.已知花球单价是市场统一标价为20元,由于购买数量多,两个商家都给出了自己的优惠条件(见表):
甲商家 | 乙商家 | ||
购买数量x(个) | 享受折扣 | 购买数量y(个) | 享受折扣 |
x≤50的部分 | 9.5折 | y≤100的部分 | 9折 |
50<x2≤00的部分 | 8.8折 | 100<y≤200的部分 | 8.5折 |
x>200的部分 | 8折 | y>200的部分 | 8折 |
(1)如果需要购买100个花球,请问在哪个商家购买会更便宜?
(2)经年级学生干部商议,最终决定选择在乙商家购买花球,并根据实际需要分两次共购买了350个花球,且第一次购买数量小于第二次,共花费140元,请问两次分别购买了多少个花球?
-参考答案-
一、单选题
1、B
【分析】
①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.
②不明确A、B、C是否在同一条直线上.所以错误.
③不知道C是否在线段AB上,错误.
④两点之间线段最短,正确.
【详解】
①射线AB和射线BA的端点不同不是同一条射线.所以错误.
②若AB和BC为不在同一条直线的两条线段,B就不是线段AC的中点.所以错误.
③若C点不在线段AB两点的连线上,那么C点就无法过线段AB.所以错误.
④两点之间线段最短,所以正确.
故选:B.
【点睛】
本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解.
2、D
【分析】
根据等式的性质解答.
【详解】
解:A. 若,则,故该项不符合题意;
B. 若,则,故该项不符合题意;
C. 若,则,故该项不符合题意;
D. 若,则(),故该项符合题意;
故选:D.
【点睛】
此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
3、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
4、A
【分析】
根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算
【详解】
解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,
,2,,3四个数循环出现,
表示的数是
与表示的两个数之积是
故选A
【点睛】
本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.
5、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
6、C
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
7、D
【分析】
根据等腰三角形的性质和全等三角形的判定方法对选项一一分析判定即可.
【详解】
解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,该选项说法错误,不符合题意;
B、顶角相等的两个等腰三角形不一定全等,因为边不相等,该选项说法错误,不符合题意;
C、底角相等的两个等腰三角形不一定全等,因为没有边对应相等,该选项说法错误,不符合题意;
D、等腰三角形的两个底角相等,该选项说法正确,符合题意;
故选:D.
【点睛】
本题考查等腰三角形的性质与全等判定,掌握等腰三角形的性质与等腰三角形全等判定是解题关键.
8、C
【分析】
根据等边三角形的性质可得,,然后利用SSS即可证出,从而可得,,,然后求出,即可求出的度数.
【详解】
解:△是等边三角形,
,,
在与中
,
,
,,,
,
,
故选C
【点睛】
此题考查的是等边三角形的性质和全等三角形的判定及性质,掌握等边三角形的性质、利用SSS判定两个三角形全等和全等三角形的对应角相等是解决此题的关键.
9、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
二、填空题
1、
【分析】
过D作DE⊥AB于E,根据角平分线性质得出CD=DE,再求出BD长,即可得出BC的长.
【详解】
解:如图,过D作DE⊥AB于E,
∵∠C=90°,
∴CD⊥AC,
∵AD平分∠BAC,
∴CD=DE,
∵D到AB的距离等于5.6cm,
∴CD=DE=5.6cm,
又∵BD=2CD,
∴BD=11.2cm,
∴BC=5.6+11.2=cm,
故答案为:.
【点睛】
本题主要考查了角平分线性质的应用,解题时注意:角平分线上的点到角两边的距离相等.
2、正六棱柱
【分析】
侧面展开图是六个全等的矩形,上下底面为正六边形,故可知几何体的名称.
【详解】
解:∵侧面展开图是六个全等的矩形,且几何体的上下底面为正六边形
∴该几何体为正六棱柱
故答案为:正六棱柱.
【点睛】
本题考查了棱柱.解题的关键在于确定棱柱的底面与侧面形状.
3、70°
【分析】
连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE,根据平行线的性质即可得到∠AOC的度数.
【详解】
解:连接OE,如图,
∵弧CE所对的圆心角度数为40°,
∴∠COE=40°,
∵OC=OE,
∴∠OCE=∠OEC,
∴∠OCE=(180°-40°)÷2=70°,
∵CE//AB,
∴∠AOC=∠OCE=70°,
故答案为:70°.
【点睛】
本题主要考查了等腰三角形的性质,三角形内角和定理,弧与圆心角的关系,平行线的性质,求出∠COE=40°是解题的关键.
4、1.34×106
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1340000人次,用科学记数法表示为 1.34×106人次,
故答案为:1.34×106.
【点睛】
此题考查科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.
5、
【分析】
根据分数指数幂的意义,利用(m、n为正整数)得出即可.
【详解】
解:.
故答案是:.
【点睛】
本题考查了分数指数幂,解决本题的关键是熟记分数指数幂的定义.
三、解答题
1、
(1);
(2).
【分析】
(1)去括号,移项合并,系数化1即可;
(2)首先分母化整数分母,去分母,去括号,移项,合并,系数化1即可.
(1)
解:,
去括号得:,
移项合并得:,
系数化1得:;
(2)
解:,
小数分母化整数分母得:,
去分母得:,
去括号得:,
移项得:,
合并得:,
系数化1得:.
【点睛】
本题考查一元一次方程的解法,掌握解一元一次方程的方法与步骤是解题关键.
2、
(1)见详解;
(2)BE⊥AC;理由见详解.
【分析】
(1)先得到AD=BD,,然后利用HL即可证明≌;
(2)延长BE,交AC于点F,由(1)可知,然后得到,即可得到结论成立.
(1)
解:∵于D,
∴,
∵,
∴,
∴,
∵,
∴≌(HL);
(2)
解:BE⊥AC;
理由如下:
延长BE,交AC于点F,如图:
由(1)可知,≌,
∴,
∵,
∴,
∴BE⊥AC;
【点睛】
本题考查了全等三角形的判定和性质,余角的性质,等腰三角形的判定和性质,解题的关键是掌握所学的知识,正确的找出全等的条件.
3、(1)见详解;(2)
【分析】
(1)根据线段垂直平分线的性质可知AB=AD,BC=CD,进而根据菱形的判定定理可求证;
(2)连接AE并延长,交BD的延长线于点G,连接FQ,由题意易得,则有,然后可得,则有,进而可得,然后证明,即有,最后根据勾股定理可求解.
【详解】
(1)证明:∵AC⊥BD,BO=DO,
∴AC垂直平分BD,
∴AB=AD,BC=CD,
∵BA=BC,
∴BA=AD=CD=BC,
∴四边形ABCD是菱形;
(2)解:,理由如下:
连接AE并延长,交BD的延长线于点G,连接FQ,如图所示:
由旋转的性质可得AP=AQ,
∵E是线段PQ的中点,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
设,
∵AP=AQ,E是线段PQ的中点,
∴,
∴,
∴,
∴,
∴,
∵,
∴(SAS),
∴,,
∴在Rt△QFP中,由勾股定理得:,
∵E是线段PQ的中点,
∴,
∴.
【点睛】
本题主要考查菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定,熟练掌握菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定是解题的关键.
4、
(1)
(2)存在,
【分析】
(1)根据关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根,≥0,代入计算求出k的取值范围.
(2)根据根与系数的关系,,,根据题意列出等式,求出k的值,根据k的值是否在取值范围内做出判断.
(1)
解:∵关于 x 的方程 x2﹣2(k﹣1)x+k2=0 有两个实数根
根据题意得,
解得.
(2)
解:存在.
根据根与系数关系,,
∵x1+x2=1﹣x1x2,
∴,
解得,
∵.
∴存在实数k=-3,使得x1+x2=1﹣x1x2.
【点睛】
本题考查一元二次方程根的判别式及根与系数的关系,解一元二次方程,要注意根据k的取值范围来进取舍.
5、
(1)在乙商家购买会更便宜
(2)第一次购买140个花球,第二次购买210个花球
【分析】
(1)利用总价=单价×数量,结合两个商家的优惠条件,即可分别求出在两个商家购买所需费用,比较后可得出在乙商家购买会更便宜;
(2)设第一次购买m个花球,则第二次购买(350-m)个花球,分0<m≤100,100<m≤150及150<m<175三种情况考虑,根据两次购买共花费6140元,即可得出关于m的一元一次方程,解之即可得出第一次购买花球的数量,再将其代入(350-m)中即可求出第二次购买花球的数量.
【小题1】
解:在甲商家购买所需费用为:
20×0.95×50+20×0.88×(100-50)=20×0.95×50+20×0.88×50=950+880=1830(元);
在乙商家购买所需费用为20×0.9×100=1800(元).
∵1830>1800,
∴在乙商家购买会更便宜.
【小题2】
设第一次购买m个花球,则第二次购买(350-m)个花球.
当0<m≤100时,20×0.9m+20×0.9×100+20×0.85×(200-100)+20×0.8(350-m-200)=6140,
解得:m=120(不合题意,舍去);
当100<m≤150时,20×0.9×100+20×0.85(m-100)+20×0.9×100+20×0.85×(200-100)+20×0.8(350-m-200)=6140,
解得:m=140,
∴350-m=350-140=210;
当150<m<175时,20×0.9×100+20×0.85(m-100)+20×0.9×100+20×0.85(350-m-100)=6150≠6140,
∴不存在该情况.
答:第一次购买140个花球,第二次购买210个花球.
【点睛】
本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
相关试卷
这是一份[中考专题]2022年北京市朝阳区中考数学历年真题定向练习 卷(Ⅰ)(精选),共20页。试卷主要包含了二次函数y=等内容,欢迎下载使用。
这是一份【历年真题】2022年北京市通州区中考数学第一次模拟试题(精选),共24页。试卷主要包含了下列利用等式的性质,错误的是,下列说法中,正确的有,在平面直角坐标系xOy中,点A,若,,且a,b同号,则的值为等内容,欢迎下载使用。
这是一份【历年真题】2022年北京市朝阳区中考数学真题模拟测评 (A)卷(含详解),共25页。试卷主要包含了如图所示,由A到B有①,要使式子有意义,则,下列式中,与是同类二次根式的是等内容,欢迎下载使用。