![[中考专题]2022年山东省枣庄市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)第1页](http://www.enxinlong.com/img-preview/2/3/12674964/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![[中考专题]2022年山东省枣庄市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)第2页](http://www.enxinlong.com/img-preview/2/3/12674964/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![[中考专题]2022年山东省枣庄市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)第3页](http://www.enxinlong.com/img-preview/2/3/12674964/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
[中考专题]2022年山东省枣庄市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)
展开
这是一份[中考专题]2022年山东省枣庄市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共22页。试卷主要包含了如图,是的外接圆,,则的度数是,下列二次根式中,最简二次根式是,的值.等内容,欢迎下载使用。
2022年山东省枣庄市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,动点从第一个数的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数的位置,第二次跳动一个单位长度到达数的位置,第三次跳动一个单位长度到达数的位置,第四次跳动一个单位长度到达数的位置,……,依此规律跳动下去,点从跳动次到达的位置,点从跳动次到达的位置,……,点、、……在一条直线上,则点从跳动( )次可到达的位置.A. B. C. D.2、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x对应的数字是﹣3的是( )A. B.C. D.3、已知,则∠A的补角等于( )A. B. C. D.4、如图,是的外接圆,,则的度数是( )A. B. C. D.5、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )A. B. C. D.6、下列二次根式中,最简二次根式是( )A. B. C. D.7、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )A. B. C. D.8、的值( ).A. B.2022 C. D.-20229、下列图形中,既是中心对称图形又是轴对称图形的是( )A. B.C. D.10、某物体的三视图如图所示,那么该物体形状可能是( )A.圆柱 B.球 C.正方体 D.长方体第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有理数,,在数轴上表示的点如图所示,化简__________.2、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.3、已知p、q是实数,有且只有三个不同的x值满足方程|x2+px+q|=2,则q的最小值 ___.4、如图,在一条可以折叠的数轴上,A、B两点表示的数分别是,3,以点C为折点,将此数轴向右对折,若点A折叠后在点B的右边,且,则C点表示的数是______.5、如图是某个几何体的表面展开图,若围成几何体后,与点E重合的两个点是______.三、解答题(5小题,每小题10分,共计50分)1、阅读材料:在合并同类项中,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.(1)把看成一个整体,合并的结果是 .(2)已知,求的值:(3)已知,,,求的值.2、在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点.(1)求A、B两点的坐标;(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标.3、一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的的小正方体个数.(1)请画出从正面和从左面看到的这个几何体的形状图.(2)若小正方体的棱长为2,求该几何体的体积和表面积.4、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,﹣).(1)求二次函数的表达式;(2)连接AC,BC,判定△ABC的形状,并说明理由.5、我们将平面直角坐标系中的图形D和点P给出如下定义:如果将图形D绕点P顺时针旋转90°得到图形,那么图形称为图形D关于点P的“垂直图形”.已知点A的坐标为,点B的坐标为(0,1),关于原点O的“垂直图形”记为,点A、B的对应点分别为点.(1)请写出:点的坐标为____________;点的坐标为____________;(2)请求出经过点A、B、的二次函数解析式;(3)请直接写出经过点A、B、的抛物线的表达式为____________. -参考答案-一、单选题1、B【分析】由题意可得:跳动个单位长度到 从到再跳动个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.【详解】解:由题意可得:跳动个单位长度到 从到再跳动个单位长度, 归纳可得:结合所以点从跳动到达跳动了: 个单位长度.故选B【点睛】本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.2、A【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.【详解】解: A.x=-3B.x=-2C.x=-2D.x=-2故答案为:A【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3、C【分析】若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.【详解】解: , ∠A的补角为: 故选C【点睛】本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.4、C【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】解:在中,,;,,;又,,故选:.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.5、C【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.Rt△OBC中,BC=AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6、D【分析】根据最简二次根式的条件分别进行判断.【详解】解:A.,不是最简二次根式,则A选项不符合题意;B.,不是最简二次根式,则B选项不符合题意;C.,不是最简二次根式,则C选项不符合题意;D.是最简二次根式,则D选项符合题意;故选:D.【点睛】题考查了最简二次根式:掌握最简二次根式的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式)是解决此类问题的关键.7、A【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【详解】解:、三视图分别为正方形,三角形,圆,故选项符合题意;、三视图分别为三角形,三角形,圆及圆心,故选项不符合题意;、三视图分别为正方形,正方形,正方形,故选项不符合题意;、三视图分别为三角形,三角形,矩形及对角线,故选项不符合题意;故选:A.【点睛】本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.8、B【分析】数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.【详解】解:故选B【点睛】本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.9、A【详解】解:.既是中心对称图形又是轴对称图形,故此选项符合题意;.是轴对称图形,不是中心对称图形,故此选项不合题意;.是轴对称图形,不是中心对称图形,故此选项不合题意;.不是轴对称图形,是中心对称图形,故此选项不合题意.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、A【分析】根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱.【详解】解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,则该几何体是圆柱. 故选:A.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.二、填空题1、##【分析】根据数轴得出,,的符号,再去绝对值即可.【详解】由数轴得,∴,,,∴.故答案为:.【点睛】本题主要考查了数轴和绝对值,掌握数轴、绝对值以及合并同类项的法则是解题的关键.2、x【分析】根据图象求出方程ax2+bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.【详解】解:由图可知:二次函数y=ax2+bx+4与x轴交于(-4,0)和(1,0),∴ax2+bx+4=0的解为:x=-4或x=1,则在关于x的方程a(x+1)2+b(x+1)=-4中,x+1=-4或x+1=1,解得:x=-5或x=0,即关于x的方程a(x+1)2+b(x+1)=-4的解为x=-5或x=0,故答案为:x=-5或x=0.【点睛】本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.3、-2【分析】根据题意由方程|x2+px+q|=2得到x2+px+q-2=0,x2+px+q+2=0,根据判别式得到Δ1=p2-4q+8,Δ2=p2-4q-8,依此可Δ2=0,Δ1=16,可得p2-4q-8=0,依此可求q的最小值.【详解】解:∵|x2+px+q|=2,∴x2+px+q-2=0①,x2+px+q+2=0②,∴Δ1=p2-4q+8,Δ2=p2-4q-8,∴Δ1>Δ2,∵有且只有三个不同的x值满足方程|x2+px+q|=2,∴Δ2=0,Δ1=16,∴p2-4q-8=0,∴q=p2-2,当p=0时,q的最小值-2.故答案为:-2.【点睛】本题考查一元二次方程的解以及根的判别式,根据题意由根的判别式得到p2-4q-8=0是解题的关键.4、【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【详解】解:∵A,B表示的数为-7,3,∴AB=3-(-7)=4+7=10,∵折叠后AB=2,∴BC==4,∵点C在B的左侧,∴C点表示的数为3-4=-1.故答案为:-1.【点睛】本题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.5、A和C【分析】根据题意可知该几何体的展开图是四棱锥的平面展开图,找出重合的棱,即可找到与点E重合的两个点.【详解】折叠之后CD和DE重合为一条棱,C点和E点重合;AH和EF重合为一条棱,A点和E点重合.所以与点E重合的两个点是A点和C点.故答案为:A和C.【点睛】此题考查的是四棱锥的展开图,解决此题的关键是运用空间想象能力把展开图折成四棱锥,找到重合的点.三、解答题1、(1)(2)(3)【分析】(1)将系数相加减即可;(2)将原式变形后整体代入,即可求出答案;(3)将原式变形后,再整体代入计算.(1)解:= =,故答案为:;(2)解:∵∴原式;(3)解:∵,,,∴原式.【点睛】此题考查了整式的加减法,整式的化简求值,正确掌握整式的加减法计算法则及整体代入计算方法是解题的关键.2、(1)A(1,0),B(5,0)(2)(6,5)【分析】(1)先将点C的坐标代入解析式,求得a;然后令y=0,求得x的值即可确定A、B的坐标;(2)由可知该抛物线的顶点坐标为(3,-4),又点D和点C到x轴的距离相等,则点D在x轴的上方,设D的坐标为(d,5),然后代入解析式求出d即可.(1)解:∵二次函数的图象与y轴交于∴,解得a=1∴二次函数的解析式为∵二次函数的图象与x轴交于A、B两点∴令y=0,即,解得x=1或x=5∵点A在点B的左侧∴A(1,0),B(5,0).(2)解:由(1)得函数解析式为∴抛物线的顶点为(3,-4)∵点D和点C到x轴的距离相等,即为5∴点D在x轴的上方,设D的坐标为(d,5)∴,解得d=6或d=0∴点D的坐标为(6,5).【点睛】本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键.3、(1)见解析;(2)104,192【分析】(1)根据从正面看,从左面看的定义,仔细画出即可;(2)体积等于立方体的个数×单个的体积;表面积等于上下面的个数即从上面看的图形正方形个数的2倍;左右看的正方形面数,前后看的正方形面数,其和乘以一个正方形的面积即可.(1)∵ ,∴ .(2)∵小正方体的棱长为2,∴每个小正方体的体积为2×2×2=8,∴该几何体的体积为(3+2+1+1+2+4)×8=104;∵ ,∴每个小正方形的面积为2×2=4,∴几何体的上下面的个数为6×2=12个,前后面的个数为6+2+8=16个,左右面的个数为4+3+2+3+4+4=20个,∴几何体的表面积为:(12+16+20)×4=192.【点睛】本题考查了从不同方向看,几何体体积和表面积,正确理解确定小正方体的个数是解题的关键.4、(1);(2)直角三角形,理由见解析.【分析】(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;(2)令,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断的形状.(1)解:将点C代入函数解析式得:,解得:,故该二次函数表达式为:.(2)解:令,得:,解得:,.∴A点坐标为(-1,0),B点坐标为(3,0).∴OA=1,OC=,,∴,. ∵,即,∴的形状为直角三角形.【点睛】本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C的坐标求出函数解析式是解答本题的关键.5、(1)(1,2);(1,0)(2)(3)【分析】(1)根据旋转的性质得出,;(2)利用待定系数法进行求解解析式即可;(3)利用待定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案.(1)解:根据题意作下图:根据旋转的性质得:,,,,故答案是:(1,2);(1,0);(2)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;(3)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;故答案为:.【点睛】本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式.
相关试卷
这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
这是一份【真题汇编】2022年山东省枣庄市中考数学模拟测评 卷(Ⅰ)(含答案详解),共20页。试卷主要包含了方程的解是.,下列各数中,是无理数的是,如图,是的外接圆,,则的度数是等内容,欢迎下载使用。
这是一份【历年真题】2022年山东省枣庄市中考数学备考模拟练习 (B)卷(含答案详解),共25页。试卷主要包含了下列方程中,解为的方程是,如图,是的外接圆,,则的度数是,下列说法中不正确的是,下列说法中,正确的是等内容,欢迎下载使用。
