数学必修41.1 任意角和弧度制教学设计及反思
展开1.1.2弧度制(1)
教学目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集一一对应关系的概念。
教学过程:一、回忆(复习)度量角的大小第一种单位制—角度制的定义。
二、提出课题:弧度制—另一种度量角的单位制
它的单位是rad 读作弧度
定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
如图:AOB=1rad
AOC=2rad
周角=2rad
1. 正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0
2. 角的弧度数的绝对值 (为弧长,为半径)
3. 用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)
用角度制和弧度制来度量任一非零角,单位不同,量数也不同。
三、角度制与弧度制的换算
抓住:360=2rad ∴180= rad
∴ 1=
例一 把化成弧度
解: ∴
例二 把化成度
解:
注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;
2.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sin表示rad角的正弦
3.一些特殊角的度数与弧度数的对应值应该记住(见课本P9表)
4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
任意角的集合 实数集R
四、练习(P11 练习1 2)
例三 用弧度制表示:1终边在轴上的角的集合 2终边在轴上的角的集合 3终边在坐标轴上的角的集合
解:1终边在轴上的角的集合
2终边在轴上的角的集合
3终边在坐标轴上的角的集合
五、 小结:1.弧度制定义 2.与弧度制的互化
六、作业:
4-1.1.2弧度制(2)
教学目的:加深学生对弧度制的理解,逐步习惯在具体应用中运用弧度制解决具体的问题。
教学过程:一、复习:弧度制的定义,它与角度制互化的方法。
二、由公式: 比相应的公式简单
弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积
例一 利用弧度制证明扇形面积公式其中是扇形弧长,是圆的半径。
证: 如图:圆心角为1rad的扇形面积为:
弧长为的扇形圆心角为
∴
比较这与扇形面积公式 要简单
例二 直径为20cm的圆中,求下列各圆心所对的弧长 ⑴ ⑵
解: ⑴:
⑵: ∴
例三 如图,已知扇形的周长是6cm,该扇形
的中心角是1弧度,求该扇形的面积。
解:设扇形的半径为r,弧长为,则有
∴ 扇形的面积
例四 计算
解:∵ ∴
∴
例五 将下列各角化成0到的角加上的形式
⑴ ⑵
解:
例六 求图中公路弯道处弧AB的长(精确到1m)
图中长度单位为:m
解: ∵
∴
三、练习:
四、作业:
2020-2021学年5.1 任意角和弧度制教案设计: 这是一份2020-2021学年5.1 任意角和弧度制教案设计,共10页。
人教版新课标A必修41.1 任意角和弧度制教学设计及反思: 这是一份人教版新课标A必修41.1 任意角和弧度制教学设计及反思,共7页。教案主要包含了教学目标,教材分析,活动设计,教学过程,布置作业,板书设计等内容,欢迎下载使用。
高中数学人教版新课标A必修41.1 任意角和弧度制教学设计: 这是一份高中数学人教版新课标A必修41.1 任意角和弧度制教学设计,共6页。教案主要包含了角度制,弧度制,弧度数,角度与弧度之间的互化,须记住的特殊角的弧度数,角度制与弧度制的比较,须注意的一个问题等内容,欢迎下载使用。

