终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    1.1 第1课时 认识勾股定理 导学案

    立即下载
    加入资料篮
    1.1  第1课时 认识勾股定理 导学案第1页
    还剩1页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北师大版八年级上册1 探索勾股定理第1课时学案

    展开

    这是一份初中数学北师大版八年级上册1 探索勾股定理第1课时学案,共2页。学案主要包含了做一做,议一议,巩固练习精选练习,掌握应用等内容,欢迎下载使用。
    1.1 探索勾股定理


    第1课时 认识勾股定理





    学习目标


    1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。


    2 、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。


    重点、难点


    重点:了解勾股定理的由来并能用它解决一些简单问题。


    难点:勾股定理的发现。


    学习过程


    一、创设问题的情境,激发学生的学习热情:


    我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边。对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系。那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理。出示投影1(章前的图文 P1 )我国是最早了解勾股定理的国家之一介绍商高(三千多年前周朝数学家)。


    出示投影2。(书中 P2 图1一2)并回答:


    1、观察图1一2,正方形A中有 个小方格,即A的面积为个 面积单位。


    正方形 B 中有 个小方格.即B的面积为 个面积单位。


    正方形 C 中有 个小方格,即C的面积为 个面积单位。


    2、你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问。


    3、图 l一2 中,A、B、C之间的面积之间有什么关系?


    在学生交流后形成共识老师板书。A + B=C ,接着提出图1一1中A、B、C的关系呢?


    二、做一做


    出示投影3(书中P3 图1一3,图1一4 )


    提问: 1、图1一 3中,A 、B、C之间有什么关系?


    2、图1 一 4中,A 、 B 、C 之间有什么关系?


    3、 从图 1一l 、 1一2 、1一3 、l一4中你发现了什么?


    在学生讨论、交流形成共识后,老师总结:


    以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。


    三、议一议


    1、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗?


    2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:


    直角三角边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。


    也就是说:如果直角三角形的两直角边为a、b,斜边为c。那么


    我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这就是勾股定理的由来.


    3、分别以5厘米和12厘米为直角边作出一个直角三角形,并测量斜边的长度(学生测量后回答斜边为13)请大家想一想(2)中的规律对这个三角形仍然成立吗?(回答是肯定的:成立。)4,(想一想):这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?指的屏幕的宽吗?那它指的是什么呢?


    四、巩固练习精选练习,掌握应用:


    勾股定理的应用是本节教学的重点,一定要让学生熟练地掌握在直角三角形中已知两边求第三边的方法,为此,可设计下列三组具有梯度性的练习:


    练习1(填空题)


    已知在Rt△ABC中,∠C=90°。


    ①若a=3,b=4,则c=________;


    ②若a=40,b=9,则c=________;


    ③若a=6,c=10,则b=_______;


    ④若c=25,b=15,则a=________。


    练习2(填空题)


    已知在Rt△ABC中,∠C=90°,AB=10。


    ①若∠A=30°,则BC=______,AC=_______;


    ②若∠A=45°,则BC=______,AC=_______。


    练习3


    已知等边三角形ABC的边长是6cm。求:


    (1)高AD的长;


    (2)△ABC的面积。





    相关学案

    初中数学人教版八年级下册17.1 勾股定理第1课时学案设计:

    这是一份初中数学人教版八年级下册17.1 勾股定理第1课时学案设计,共3页。学案主要包含了情景导入,感受新知,自学互研 生成新知,典例剖析 运用新知,课堂小结 回顾新知,检测反馈 落实新知,课后作业 巩固新知A的面积等内容,欢迎下载使用。

    初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理第1课时学案设计:

    这是一份初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理第1课时学案设计,共4页。学案主要包含了知识回顾,课堂小结等内容,欢迎下载使用。

    初中数学人教版八年级下册17.1 勾股定理第1课时学案:

    这是一份初中数学人教版八年级下册17.1 勾股定理第1课时学案,共4页。学案主要包含了知识回顾,课堂小结等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map