所属成套资源:【期中专区】人教版数学初二下册(春季班)期中测试卷合集(含解析答案)
最新人教版初二下册(春季班)数学期中考试试题及答案11
展开
这是一份最新人教版初二下册(春季班)数学期中考试试题及答案11,共21页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性等内容,欢迎下载使用。
新人教版初中数学学科教材分析数学是一门研究数量关系和空间形式的科学,具有严密的符号体系,独特的公式结构,形象的图像语言。它有三个显著的特点:高度抽象,逻辑严密,广泛应用。 1.高度抽象性数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来并借助于抽象发展的。2.严密逻辑性 数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。任何一门科学,都要应用逻辑工具,都有它严谨的一面。3.广泛应用性 数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。 数学的这三个显著特点是互相联系的,数学的高度抽象性,决定了其逻辑的严密性,同时又保证其广泛的应用性。 人教版八年级数学下册期中考试试卷及参考答案11一、单项选择题(共10个小题,每小题3分,满分30分)在每小题列出的四个选项中,只有一个是正确的,请在答题卡上填写正确的答案选项.1.(3分)下列二次根式中,属于最简二次根式的是( )A. B. C. D.2.(3分)若在实数范围内有意义,则x的取值范围是( )A.x>0 B.x>6 C.x≥6 D.x≤63.(3分)以下列各组数为边长,能组成直角三角形的是( )A.1,1,2 B.2,3,4 C.2,2,2 D.2,,4.(3分)下列运算一定正确的是( )A.(a+b)2=a2+b2 B.=﹣3 C.a6÷a2=a3 D.(a2)3=a65.(3分)下列命题的逆命题成立的是( )A.对顶角相等 B.全等三角形的对应角相等 C.如果两个数相等,那么它们的绝对值相等 D.两直线平行,同位角相等6.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长是( )A.5 B.25 C. D.5或7.(3分)下列说法正确的是( )A.对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形 C.三条边相等的四边形是菱形 D.三个角是直角的四边形是矩形8.(3分)如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是( )A.8m B.10m C.14m D.24m9.(3分)顺次连结菱形四边中点所得的四边形一定是( )A.平行四边形 B.矩形 C.菱形 D.正方形10.(3分)如图,在矩形ABCD中,AB=24,BC=12,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A.60 B.80 C.100 D.90二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)化简:= .12.(4分)若|x﹣3|+=0,则()2018的值是 .13.(4分)如图,已知▱ABCD中对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个矩形.你添加的条件是 .14.(4分)如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE= .15.(4分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为 .16.(4分)如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是 .三、解答题(一)(共3个小题,每小题6分,满分18分)17.(6分)计算:218.(6分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段AB,使AB=;(2)在图②中画一个以格点为顶点,面积为2的正方形ABCD.19.(6分)如图,在▱ABCD中,已知点E、F在对角线边BD上,且BE=DF,求证:四边形AECF是平行四边形.四、解答题(二)(共3个小题,每小题7分,满分21分)20.(7分)已知a=+2,b=﹣2,求a2﹣b2的值.21.(7分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.22.(7分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.五、解答题(三)(共3个小题,每小题9分,满分27分)23.(9分)如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形? 24.(9分)同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积. 25.(9分)如图,在在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC= cm;(2)当t= 秒时,四边形PQBA成为矩形.(3)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
人教版八年级数学下册期中考试试卷11参考答案 一、单项选择题(共10个小题,每小题3分,满分30分)在每小题列出的四个选项中,只有一个是正确的,请在答题卡上填写正确的答案选项.1.(3分)下列二次根式中,属于最简二次根式的是( )A. B. C. D.【分析】根据最简二次根式的定义直接进行判断,或直观地观察被开方数的每一个因数(或因式)的指数是否都小于根指数2,且被开方数中不含有分母;被开方数是多项式时要先因式分解后再观察.【解答】解:A、的被开方数中含有分母,故不是最简二次根式,故A选项错误;B、=2,二次根式的被开方数中含有没开的尽方的数,故不是最简二次根式,故B选项错误;C、=2,二次根式的被开方数中含有没开的尽方的数,故不是最简二次根式,故C选项错误;D、符合最简二次根式的定义,是最简二次根式,故D选项正确.故选:D.【点评】本题主要考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.(3分)若在实数范围内有意义,则x的取值范围是( )A.x>0 B.x>6 C.x≥6 D.x≤6【分析】直接利用二次根式的定义分析得出答案.【解答】解:在实数范围内有意义,则x﹣6≥0,故x的取值范围是:x≥6.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.(3分)以下列各组数为边长,能组成直角三角形的是( )A.1,1,2 B.2,3,4 C.2,2,2 D.2,,【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+12≠22,故不是直角三角形,故选项错误;B、22+32≠42,故不是直角三角形,故选项错误;C、22+22≠22,故不是直角三角形,故选项错误;D、22+()2=()2,故是直角三角形,故选项正确.故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.(3分)下列运算一定正确的是( )A.(a+b)2=a2+b2 B.=﹣3 C.a6÷a2=a3 D.(a2)3=a6【分析】根据整式的运算法则与二次根式的运算法则即可即可求出答案.【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)原式=3,故B错误;(C)原式=a4,故C错误;故选:D.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.(3分)下列命题的逆命题成立的是( )A.对顶角相等 B.全等三角形的对应角相等 C.如果两个数相等,那么它们的绝对值相等 D.两直线平行,同位角相等【分析】写出各个命题的逆命题,然后判断是否成立即可.【解答】解:A、逆命题为相等的角为对顶角,不成立;B、逆命题为对应角相等的三角形全等,不成立;C、逆命题为绝对值相等的两个数相等,不成立;D、逆命题为同位角相等,两直线平行,成立,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是能够正确的写出各个命题的逆命题,难度不大.6.(3分)已知一个直角三角形的两边长分别为3和4,则第三边长是( )A.5 B.25 C. D.5或【分析】分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D.【点评】本题考查了对勾股定理的应用,注意:在直角三角形中的两条直角边a、b的平方和等于斜边c的平方.7.(3分)下列说法正确的是( )A.对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形 C.三条边相等的四边形是菱形 D.三个角是直角的四边形是矩形【分析】由矩形和菱形的判定方法得出选项A、B、C错误,选项D正确.【解答】解:A、∵对角线互相垂直平分的四边形是菱形,∴选项A错误;B、∵对角线互相平分且相等的四边形是矩形,∴选项B错误;C、∵四条边相等的四边形是菱形,∴选项C错误;D、∵三个角是直角的四边形是矩形,∴选项D正确;故选:D.【点评】本题考查了矩形的判定方法、菱形的判定方法;熟记矩形和菱形的判定方法是解决问题的关键.8.(3分)如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是( )A.8m B.10m C.14m D.24m【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=6m,AC=10m∴AB===8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选:C.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系9.(3分)顺次连结菱形四边中点所得的四边形一定是( )A.平行四边形 B.矩形 C.菱形 D.正方形【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【解答】解:如图,四边形ABCD是菱形,且E、F、G、H分别是AB、BC、CD、AD的中点,则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°∴边形EFGH是矩形.故选:B.【点评】本题考查了中点四边形.能够根据三角形的中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形.10.(3分)如图,在矩形ABCD中,AB=24,BC=12,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )A.60 B.80 C.100 D.90【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=824﹣x,在Rt△AFD′中,(24﹣x)2=x2+122,解之得:x=9,∴AF=AB﹣FB=24﹣9=15,∴S△AFC=•AF•BC=90.故选:D.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)化简:= 9.9 .【分析】根据=•(a≥0,b≥0)进行计算即可.【解答】解:=11×0.9=9.9,故答案为:9.9.【点评】此题主要考查了二次根式的乘除法,关键是掌握二次根式的乘法计算公式.12.(4分)若|x﹣3|+=0,则()2018的值是 1 .【分析】根据:|x﹣3|+=0,可得:,据此求出x、y的值,再应用代入法,求出()2018的值是多少即可.【解答】解:∵|x﹣3|+=0,∴,解得∴()2018==(﹣1)2018=1.故答案为:1.【点评】此题主要考查了算术平方根、绝对值的非负性质的应用,要熟练掌握.13.(4分)如图,已知▱ABCD中对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个矩形.你添加的条件是 AC=BD(答案不唯一) .【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD(答案不唯一),理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD(答案不唯一).【点评】此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理,难度不大.14.(4分)如图所示,在▱ABCD中,AB=5,AD=8,DE平分∠ADC,则BE= 3 .【分析】先根据角平分线和平行四边形的性质求出CD=CE,再由BE=BC﹣CE求解.【解答】解:在ABCD中,AB=5,AD=8,∴BC=8,CD=5,∵DE平分∠ADC,∴∠ADE=∠CDE,又▱ABCD中,AD∥BC,∴∠ADE=∠DEC,∴∠DEC=∠CDE,∴CD=CE=5,∴BE=BC﹣CE=8﹣5=3.故答案为3.【点评】本题主要考查平行四边形的性质,角平分线性质的利用是解题的关键,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.15.(4分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为 10 .【分析】根据垂线的性质推知△ADC是直角三角形;然后在直角三角形ADC中,利用直角三角形斜边上的中线是斜边的一半,求得AC=10;最后由等腰三角形ABC的两腰AB=AC,求得AB=10.【解答】解:∵在△ABC中,AD⊥BC,垂足为D,∴△ADC是直角三角形;∵E是AC的中点.∴DE=AC(直角三角形的斜边上的中线是斜边的一半);又∵DE=5,AB=AC,∴AB=10;故答案为:10.【点评】本题主要考查了直角三角形斜边上的中线、等腰三角形的性质.此题是一道基础题,只要同学们在做题过程中多一份细心,就会多一份收获的.16.(4分)如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是 5 .【分析】要求PM+PN的最小值,PM、PN不能直接求,可考虑通过作辅助线转化PN、PM的值,从而找出其最小值求解.【解答】解:如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,∴EN=AB,EN∥AB,而由题意可知,可得AB==5,∴EN=AB=5,∴PM+PN的最小值为5.故答案为:5.【点评】考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键.三、解答题(一)(共3个小题,每小题6分,满分18分)17.(6分)计算:2【分析】首先化简二次根式,然后再合并同类二次根式.【解答】解:原式=4﹣2+3=5.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.18.(6分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段AB,使AB=;(2)在图②中画一个以格点为顶点,面积为2的正方形ABCD.【分析】(1)利用勾股定理即可解决问题.(2)利用数形结合的思想,画一个边长为的正方形即可.【解答】解:(1)线段AB如图所示.(2)正方形ABCD如图所示.【点评】本题考查作图﹣应用与设计,勾股定理等知识,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题.19.(6分)如图,在▱ABCD中,已知点E、F在对角线边BD上,且BE=DF,求证:四边形AECF是平行四边形.【分析】连接AC交BD于O点,依据平行四边形的对角线互相平分得到AO=OC,OB=OD,然后再证明OE=OF,最后依据对角线相互平分的四边形是平行四边形进行证明即可.【解答】证明:连接AC交BD于O点.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.又∵BE=DF,∴OE=OF. ∴四边形AECF是平行四边形.【点评】本题主要考查的是平行四边形的性质和判定,熟练掌握平行四边形的性质和判定定理是解题的关键.四、解答题(二)(共3个小题,每小题7分,满分21分)20.(7分)已知a=+2,b=﹣2,求a2﹣b2的值.【分析】根据平方差公式、二次根式的混合运算法则计算即可.【解答】解:a+b=+2+﹣2=2,a﹣b=(+2)﹣(﹣2)=4,则a2﹣b2=(a+b)(a﹣b)=8.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.21.(7分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【分析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.故四边形ABCD的面积是36.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.22.(7分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.【分析】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题中给了两条中位线,利用中位线的性质,可利用一组对边平行且相等来证明.【解答】解:在△ABC中,∵BE、CD为中线∴AD=BD,AE=CE,∴DE∥BC且DE=BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=BC.∴DE∥FG,DE=FG.∴四边形DFGE为平行四边形.【点评】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.五、解答题(三)(共3个小题,每小题9分,满分27分)23.(9分)如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?【分析】(1)由正方形的性质可得出AB⊥BC、∠B=90°,根据EF⊥AB、EG⊥BC利用“垂直于同一条直线的两直线互相平行”,即可得出EF∥GB、EG∥BF,再结合∠B=90°,即可证出四边形BFEG是矩形;(2)由正方形的周长可求出正方形的边长,根据正方形的性质可得出△AEF为等腰直角三角形,进而可得出AF=EF,再根据矩形的周长公式即可求出结论;(3)由正方形的判定可知:若要四边形BFEG是正方形,只需EF=BF,结合AF=EF、AB=10cm,即可得出结论.【解答】解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴EF∥GB,EG∥BF.∵∠B=90°,∴四边形BFEG是矩形; (2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm. (3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.【点评】本题考查了正方形的判定与性质、矩形的判定与性质、平行线的判定、等腰直角三角形的性质以及矩形的周长,解题的关键是:(1)根据平行线的判定定理找出EF∥GB、EG∥BF;(2)根据正方形的性质找出AF=EF;(3)熟练掌握正方形的判定定理.24.(9分)同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.【分析】(1)先证明四边形AECF是平行四边形,再证明AF=CE即可.(2)在RT△ABE中利用勾股定理求出BE、AE,再根据S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC求出面积即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∵∠FAC=∠FCA,∴AF=CF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AE=EC=CF=AF,设菱形的边长为a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=156cm2.【点评】本题考查菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定方法是解决问题的关键,学会转化的思想,把问题转化为方程解决属于中考常考题型.25.(9分)如图,在在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC= 18 cm;(2)当t= 秒时,四边形PQBA成为矩形.(3)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.【分析】(1)作DE⊥BC于E,则四边形ABED为矩形.在直角△CDE中,已知DC、DE的长,根据勾股定理可以计算EC的长度,根据BC=BE+EC即可求出BC的长度;(2)当PA=BQ时,四边形PQBA为矩形,根据PA=QB列出关于t的方程,解方程即可;(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【解答】解:根据题意得:PA=2t,CQ=3t,则PD=AD﹣PA=12﹣2t,(1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC==6cm,∴BC=BE+EC=18cm.故答案为18; (2)∵AD∥BC,∠B=90°∴当PA=BQ时,四边形PQBA为矩形,即2t=18﹣3t,解得t=秒,故当t=秒时四边形PQBA为矩形;故答案为 (3)△DQC是等腰三角形时,分三种情况讨论:①当QC=DC时,即3t=10,∴t=;②当DQ=DC时,=6,∴t=4;③当QD=QC时,3t•=5,∴t=.故存在t,使得△DQC是等腰三角形,此时t的值为秒或4秒或秒.【点评】此题考查了直角梯形的性质、矩形的判定、等腰三角形的判定与性质、勾股定理等知识,此题难度适中,注意掌握数形结合思想与方程思想的应用.
相关试卷
这是一份最新人教版初二下册(春季班)数学期中考试试题及答案15,共31页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性等内容,欢迎下载使用。
这是一份最新人教版初二下册(春季班)数学期中考试试题及答案13,共22页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性,下列各式中正确的是,已知点P,下列命题错误的是,如图,若=x,则实数x是等内容,欢迎下载使用。
这是一份最新人教版初二下册(春季班)数学期中考试试题及答案12,共12页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性等内容,欢迎下载使用。

