所属成套资源:【期中专区】人教版数学初二下册(春季班)期中测试卷合集(含解析答案)
最新人教版初二下册(春季班)数学期中考试试题及答案1
展开
这是一份最新人教版初二下册(春季班)数学期中考试试题及答案1,共14页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性等内容,欢迎下载使用。
新人教版初中数学学科教材分析数学是一门研究数量关系和空间形式的科学,具有严密的符号体系,独特的公式结构,形象的图像语言。它有三个显著的特点:高度抽象,逻辑严密,广泛应用。 1.高度抽象性数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来并借助于抽象发展的。2.严密逻辑性 数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。任何一门科学,都要应用逻辑工具,都有它严谨的一面。3.广泛应用性 数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。 数学的这三个显著特点是互相联系的,数学的高度抽象性,决定了其逻辑的严密性,同时又保证其广泛的应用性。 人教版八年级数学下册期中考试试卷及参考答案1一、选择题(每小题2分,共12分)1.下列式子中,属于最简二次根式的是( )A. B. C. D. 2. 如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于( )A. B. C. D. 3.若代数式有意义,则实数的取值范围是( )A. ≠ 1B. ≥0C. >0D. ≥0且 ≠14. 如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是 ( )A.12 B. 24 C. D. 5. 如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5 º,EF⊥AB,垂足为F,则EF的长为( )A.1 B. C.4-2 D.3-46.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( )A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2二、填空题:(每小题3分,共24分)7.计算:= .8.若在实数范围内有意义,则的取值范围是 . 9.若实数、满足,则= . 10.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数书为 . 11.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 . 12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD成为菱形.(只需添加一个即可)13 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2cm,∠A=120°,则EF= . 14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_________. 三、解答题(每小题5分,共20分)15.计算: 16. 如图8,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长. 17.先化简,后计算:,其中,. 18. 如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF. 四、解答题(每小题7分,共28分)19. 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长. 20. 如图,在四边形ABCD中,AB=BC,对角线BD平分 ABC,P是BD上一点,过点P作PMAD,PNCD,垂 足分别为M、N。 (1) 求证:ADB=CDB; (2) 若ADC=90,求证:四边形MPND是正方形。 21.如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF。(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长。 22.如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明) 五、解答题(每小题8分,共16分)23. 如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC. 24. 2013如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC。 (1)求证;OE=OF; (2)若BC=,求AB的长。 六解答题:(每小题10分,共20分)25. 如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长. 26. 如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为_________s时,四边形ACFE是菱形;②当t为_________s时,以A、F、C、E为顶点的四边形是直角梯形. 参考答案1.B;2.C;3.D;4.D;5.C;6.C;7.-7;8. ≤;9. ;10.25°;11. (8052,0);12. OA=OC或AD=BC或AD∥BC或AB=BC;13. ;14. 或3;15. ;16. 解:∵四边形ABCD是菱形,对角线AC与BD相交于O,∴AC⊥BD,DO=BO,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6.17. :原式 当,时,原式的值为。18. 证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD ∴∠OAE=∠OCF ∵∠AOE=∠COF ∴△OAE≌△OCF(ASA) ∴OE=OF 19. (1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∵在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,∴∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF,在△ABE和△CDF中∴△ABE≌△CDF(ASA),∴AE=CF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形; (2)解:∵四边形BFDE为为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.20. (1) ∵BD平分ABC,∴ABD=CBD。又∵BA=BC,BD=BD, ∴△ABD △CBD。∴ADB=CDB。 (4分) (2) ∵PMAD,PNCD,∴PMD=PND=90。 又∵ADC=90,∴四边形MPND是矩形。 ∵ADB=CDB,PMAD,PNCD,∴PM=PN。 ∴四边形MPND是正方形。21.(1)略(2)22. 证明:(1)∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF, (2)△ADE≌△CBF,△DFE≌△BEF. 23.解答:证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF; (2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B. 24. (1)证明:∵四边形ABCD是矩形 ∴AB∥CD,∠OAE=∠OCF,∠OEA=∠OFC ∵AE=CF ∴△AEO≌△CFO(ASA) ∴OE=OF (2)连接BO ∵OE=OF,BE=BF ∴BO⊥EF且∠EBO=∠FBO ∴∠BOF=900 ∵四边形ABCD是矩形 ∴∠BCF=900 又∵∠BEF=2∠BAC,∠BEF=∠BAC+∠EOA ∴∠BAC=∠EOA ∴AE=OE ∵AE=CF,OE=OF ∴OF=CF 又∵BF=BF ∴△BOF≌△BCF(HL) ∴∠OBF=∠CBF ∴∠CBF=∠FBO=∠OBE ∵∠ABC=900 ∴∠OBE=300 ∴∠BEO=600 ∴∠BAC=300∴AC=2BC=,∴AB=25.(1)证明:∵Rt△OAB中,D为OB的中点,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,AO=,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1. 26.(1) 证明:∵ ∴ ∵是边的中点 ∴又∵∴△ADE≌△CDF(2)①∵当四边形是菱形时,∴ 由题意可知:,∴ ②若四边形是直角梯形,此时 过作于M,,可以得到, 即,∴, 此时,重合,不符合题意,舍去。 若四边形若四边形是直角梯形,此时, ∵△ABC是等边三角形,F是BC中点, ∴,得到 经检验,符合题意。∴① ②
相关试卷
这是一份最新人教版初二下册(春季班)数学期中考试试题及答案13,共22页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性,下列各式中正确的是,已知点P,下列命题错误的是,如图,若=x,则实数x是等内容,欢迎下载使用。
这是一份最新人教版初二下册(春季班)数学期中考试试题及答案12,共12页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性等内容,欢迎下载使用。
这是一份最新人教版初二下册(春季班)数学期中考试试题及答案9,共24页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性,下列命题,,却踩伤了花草等内容,欢迎下载使用。

