终身会员
搜索
    上传资料 赚现金
    英语朗读宝
    立即下载
    加入资料篮
    专题12.4 角平分线的性质与判定(专项训练)第1页
    专题12.4 角平分线的性质与判定(专项训练)第2页
    专题12.4 角平分线的性质与判定(专项训练)第3页
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    八年级上册数学活动课时练习

    展开

    这是一份八年级上册数学活动课时练习,共15页。
    专题12.4  角平分线的性质与判定(专项训练)1.如图,OP平分∠MONPAON于点A,点Q是射线OM上一个动点,若PA3,则PQ的最小值为(  )A B2 C3 D22.如图,ABCDBPCP分别平分∠ABC和∠DCBAD过点P,且与AB垂直.若AD8,则点PBC的距离是(  )A8 B6 C4 D23.如图,直线ll′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有(  )A.一处 B.二处 C.三处 D.四处4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是(  )A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等 C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确5.如图,已知在△ABC中,CDAB边上的高线,BE平分∠ABC,交CD于点EBC5DE2,则△BCE的面积等于(  )A10 B7 C5 D46.如图,RtABC中,∠C90°,AD平分∠BAC,交BC于点DAB10SABD15,则CD的长为(  )A3 B4 C5 D67.如图,△ABC的三边ABBCCA长分别是203040,其三条角平分线将△ABC分为三个三角形,则SABOSBCOSCAO等于(  )A111 B123 C234 D3458.如图,在RtABC中,∠C90°,以顶点A为圆心,适当长为半径画弧,分别交ACAB于点MN,再分别以点MN为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD4AB15,则△ABD的面积是(  )A15 B30 C45 D609.如图,点EBC的中点,ABBCDCBCAE平分∠BAD,下列结论:AED90°;ADE=∠CDEDEBEADAB+CD,四个结论中成立的是(  )A①②④ B①②③ C②③④ D①③10.如图,已知在四边形ABCD中,∠BCD90°,BD平分∠ABCAB6BC9CD4,则四边形ABCD的面积是(  )A24 B30 C36 D4211.如图,在△ABC中,CD平分∠ACBAB于点DDEAC交于点EDFBC于点F,且BC4DE2,则△BCD的面积是   12.如图,已知△ABC的周长是21OBOC分别平分∠ABC和∠ACBODBCD,且OD4,△ABC的面积是    13.如图:已知OAOB两条公路,以及CD两个村庄,建立一个车站P,使车站到两个村庄距离相等即PCPD,且POAOB两条公路的距离相等.14.(2020秋•饶平县校级期末)如图,D是∠EAF平分线上的一点,若∠ACD+ABD180°,请说明CDDB的理由.   15.如图:在△ABC中,∠C90°,AD是∠BAC的平分线,DEABEFAC上,BDDF,证明:1CFEB2ABAF+2EB  16.如图,△ABC中,AD平分∠BACDGBC且平分BCDEABEDFACF1)说明BECF的理由;2)如果AB5AC3,求AEBE的长.     专题12.4  角平分线(专项训练)答案1.如图,OP平分∠MONPAON于点A,点Q是射线OM上一个动点,若PA3,则PQ的最小值为(  )A B2 C3 D2【答案】C【解答】解:过点PPBOMBOP平分∠MONPAONPA3PBPA3PQ的最小值为3故选:C2.如图,ABCDBPCP分别平分∠ABC和∠DCBAD过点P,且与AB垂直.若AD8,则点PBC的距离是(  )A8 B6 C4 D2【答案】C【解答】解:过点PPEBCEABCDPAABPDCDBPCP分别平分∠ABC和∠DCBPAPEPDPEPEPAPDPA+PDAD8PAPD4PE4故选:C3.如图,直线ll′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有(  )A.一处 B.二处 C.三处 D.四处【答案】D【解答】解:如图所示,加油站站的地址有四处.故选:D4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是(  )A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等 C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确【答案】A【解答】解:如图所示:过两把直尺的交点PPEAOPFBO∵两把完全相同的长方形直尺,PEPFOP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A5.如图,已知在△ABC中,CDAB边上的高线,BE平分∠ABC,交CD于点EBC5DE2,则△BCE的面积等于(  )A10 B7 C5 D4【答案】C【解答】解:作EFBCFBE平分∠ABCEDABEFBCEFDE2SBCEBCEF×5×25故选:C6.如图,RtABC中,∠C90°,AD平分∠BAC,交BC于点DAB10SABD15,则CD的长为(  )A3 B4 C5 D6【答案】A【解答】解:如图,过点DDEABE∵∠C90°,AD平分∠BACDECDSABDABDE×10DE15解得DE3CD3故选:A7.如图,△ABC的三边ABBCCA长分别是203040,其三条角平分线将△ABC分为三个三角形,则SABOSBCOSCAO等于(  )A111 B123 C234 D345【答案】C【解答】解:过点OODACDOEABEOFBCF∵点O是内心,OEOFODSABOSBCOSCAOABOEBCOFACODABBCAC234故选:C8.如图,在RtABC中,∠C90°,以顶点A为圆心,适当长为半径画弧,分别交ACAB于点MN,再分别以点MN为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD4AB15,则△ABD的面积是(  )A15 B30 C45 D60【答案】B【解答】解:由题意得AP是∠BAC的平分线,过点DDEABE又∵∠C90°,DECD∴△ABD的面积=ABDE×15×430故选:B9.如图,点EBC的中点,ABBCDCBCAE平分∠BAD,下列结论:AED90°;ADE=∠CDEDEBEADAB+CD,四个结论中成立的是(  )A①②④ B①②③ C②③④ D①③【答案】A【解答】解:过EEFADF,如图,ABBCAE平分∠BADRtAEFRtAEBBEEFABAF,∠AEF=∠AEB而点EBC的中点,ECEFBE,所以错误;RtEFDRtECDDCDF,∠FDE=∠CDE,所以正确;ADAF+FDAB+DC,所以正确;∴∠AED=∠AEF+FEDBEC90°,所以正确.故选:A10.如图,已知在四边形ABCD中,∠BCD90°,BD平分∠ABCAB6BC9CD4,则四边形ABCD的面积是(  )A24 B30 C36 D42【答案】B【解答】解:过DDHABBA的延长线于HBD平分∠ABC,∠BCD90°,DHCD4∴四边形ABCD的面积=SABD+SBCDABDH+BCCD×6×4+×9×430故选:B11.如图,在△ABC中,CD平分∠ACBAB于点DDEAC交于点EDFBC于点F,且BC4DE2,则△BCD的面积是   【答案】4【解答】解:∵CD平分∠ACBDEACDFBCDFDE2SBCDBC×DF×4×24故答案为:412.如图,已知△ABC的周长是21OBOC分别平分∠ABC和∠ACBODBCD,且OD4,△ABC的面积是    【答案】42【解答】解:OOEABEOFACF,连接OAOBOC分别平分∠ABC和∠ACBODBCOEODODOFOEOFOD4∴△ABC的面积是:SAOB+SAOC+SOBC×AB×OE+×AC×OF+×BC×OD×4×(AB+AC+BC×4×2142故答案为:4213.如图:已知OAOB两条公路,以及CD两个村庄,建立一个车站P,使车站到两个村庄距离相等即PCPD,且POAOB两条公路的距离相等.【解答】解:如图,点P为所作.14.(2020秋•饶平县校级期末)如图,D是∠EAF平分线上的一点,若∠ACD+ABD180°,请说明CDDB的理由.【答案】略【解答】解:过点D分别作AEAF的垂线,交AEM,交AFN则∠CMD=∠BND90°,AD是∠EAF的平分线,DMDN∵∠ACD+ABD180°,ACD+MCD180°,∴∠MCD=∠NBD在△CDM和△BDN中,CMD=∠BND90°,MCD=∠NBDDMDN∴△CDM≌△BDNCDDB 15.如图:在△ABC中,∠C90°,AD是∠BAC的平分线,DEABEFAC上,BDDF,证明:1CFEB2ABAF+2EB【解答】证明:(1)∵AD是∠BAC的平分线,DEABDCACDEDCRtCDFRtEDB中,RtCDFRtEDBHL).CFEB 2)∵AD是∠BAC的平分线,DEABDCACCDDERtADCRtADE中,RtADCRtADEHL),ACAEABAE+BEAC+EBAF+CF+EBAF+2EB16.如图,△ABC中,AD平分∠BACDGBC且平分BCDEABEDFACF1)说明BECF的理由;2)如果AB5AC3,求AEBE的长.【解答】(1)证明:连接BDCDAD平分∠BACDEABDFACDEDF,∠BED=∠CFD90°,DGBC且平分BCBDCDRtBEDRtCFD中,RtBEDRtCFDHL),BECF 2)解:在△AED和△AFD中,∴△AED≌△AFDAAS),AEAFBEx,则CFxAB5AC3AEABBEAFAC+CF5x3+x解得:x1BE1AEABBE514

    相关试卷

    浙教版七年级下册1.3平行线的判定优秀随堂练习题:

    这是一份浙教版七年级下册1.3平行线的判定优秀随堂练习题,文件包含专题13平行线的判定专项训练-七年级数学下册《同步考点解读•专题训练》浙教版解析版docx、专题13平行线的判定专项训练-七年级数学下册《同步考点解读•专题训练》浙教版原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    中考数学总复习第2讲 角平分线的性质与判定难点解析与训练:

    这是一份中考数学总复习第2讲 角平分线的性质与判定难点解析与训练,共6页。试卷主要包含了角平分线的性质定理,角平分线的判定定理等内容,欢迎下载使用。

    人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质课时训练:

    这是一份人教版八年级上册第十二章 全等三角形12.3 角的平分线的性质课时训练,共15页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map