2021-2022学年西藏省市级名校中考数学模拟预测题含解析
展开2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则( )
A.三个视图的面积一样大B.主视图的面积最小
C.左视图的面积最小D.俯视图的面积最小
2.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
A.2B.8C.﹣2D.﹣8
3.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( )
A.平均数B.众数C.中位数D.方差
4.如图是某几何体的三视图及相关数据,则该几何体的全面积是( )
A.15πB.24πC.20πD.10π
5.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )
A.3cm,4cm,8cm B.8cm,7cm,15cm
C.13cm,12cm,20cm D.5cm,5cm,11cm
6.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )
A.+=18B.=18
C.+=18D.=18
7.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是( )
A.﹣8B.﹣4C.4D.8
8.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )
A.200米B.200米C.220米D.100米
9.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4
10.点是一次函数图象上一点,若点在第一象限,则的取值范围是( ).
A.B.C.D.
11.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,)B.(2,)C.(,)D.(,3﹣)
12.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是
A.B.C.D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知点P(2,3)在一次函数y=2x-m的图象上,则m=_______.
14.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).
15.计算:(π﹣3)0+(﹣)﹣1=_____.
16.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABnCnCn-1的面积为________________.
17.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:________.
18.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
(1)求点A,点B的坐标;
(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
20.(6分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.
(1)求证:四边形是平行四边形;
(2)如果,求证四边形是矩形.
21.(6分)(1)计算:
(2)化简:
22.(8分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。
(1)求二次函数的表达式;
(2)若一次函数y=kx+b(k≠0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;
(3)将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且m>n,结合图象求x0的取值范围.
23.(8分)下表给出A、B、C三种上宽带网的收费方式:
设上网时间为t小时.
(I)根据题意,填写下表:
(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;
(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?
24.(10分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
(1)求每部型手机和型手机的销售利润;
(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
①求关于的函数关系式;
②该手机店购进型、型手机各多少部,才能使销售总利润最大?
(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
25.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=,且OC=4,求BD的长.
26.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.
27.(12分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cs53°≈,tan53°≈)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.
故选C
考点:三视图
2、A
【解析】
试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.
考点:一次函数图象上点的坐标特征.
3、D
【解析】
A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;
添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;
∴平均数不发生变化.
B. ∵原众数是:3;
添加一个数据3后的众数是:3;
∴众数不发生变化;
C. ∵原中位数是:3;
添加一个数据3后的中位数是:3;
∴中位数不发生变化;
D. ∵原方差是:;
添加一个数据3后的方差是:;
∴方差发生了变化.
故选D.
点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.
4、B
【解析】
解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.
点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.
5、C
【解析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
A、3+4<8,不能组成三角形;
B、8+7=15,不能组成三角形;
C、13+12>20,能够组成三角形;
D、5+5<11,不能组成三角形.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.
6、B
【解析】
根据前后的时间和是18天,可以列出方程.
【详解】
若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.
故选B
【点睛】
本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.
7、B
【解析】
根据反比例函数的图象和性质结合矩形和三角形面积解答.
【详解】
解:作,连接.
∵四边形AHEB,四边形ECOH都是矩形,BE=EC,
∴
故选B.
【点睛】
此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.
8、D
【解析】
在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
【详解】
∵在热气球C处测得地面B点的俯角分别为45°,
∴BD=CD=100米,
∵在热气球C处测得地面A点的俯角分别为30°,
∴AC=2×100=200米,
∴AD==100米,
∴AB=AD+BD=100+100=100(1+)米,
故选D.
【点睛】
本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
9、B
【解析】
结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.
【详解】
解:①由图象可知,抛物线开口向下,所以①正确;
②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
剩下的选项中都有③,所以③是正确的;
易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.
故选:B.
【点睛】
本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.
10、B
【解析】
试题解析:把点代入一次函数得,
.
∵点在第一象限上,
∴,可得,
因此,即,
故选B.
11、A
【解析】
解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cs10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.
12、A
【解析】
由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.
【详解】
解:由题意得,,,
由勾股定理得,,
.
故选:A.
【点睛】
本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据待定系数法求得一次函数的解析式,解答即可.
【详解】
解:∵一次函数y=2x-m的图象经过点P(2,3),
∴3=4-m,
解得m=1,
故答案为:1.
【点睛】
此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.
14、1
【解析】
由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.
【详解】
解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.
故答案为1.
【点睛】
根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.
15、-1
【解析】
先计算0指数幂和负指数幂,再相减.
【详解】
(π﹣3)0+(﹣)﹣1,
=1﹣3,
=﹣1,
故答案是:﹣1.
【点睛】
考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.
16、或
【解析】
试题分析:AC===,因为矩形都相似,且每相邻两个矩形的相似比=,∴=2×1=2,=,===,
...,==...===.
故答案为.
考点:1.相似多边形的性质;2.勾股定理;3.规律型;4.矩形的性质;5.综合题.
17、答案不唯一
【解析】
分析:把y改写成顶点式,进而解答即可.
详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为
y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.
18、1.2
【解析】
仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.
【详解】
∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,
∴该玉米种子发芽的概率为1.2,
故答案为1.2.
【点睛】
考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.
【解析】
(1)令y=0,得到关于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;
(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.
【详解】
(1)解:设y=0,则0=﹣x2﹣x+4
∴x1=﹣4,x2=2
∴A(﹣4,0),B(2,0)
(2)作PD⊥AO交AC于D
设AC解析式y=kx+b
∴
解得:
∴AC解析式为y=x+4.
设P(t,﹣t2﹣t+4)则D(t,t+4)
∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
∴S△ACP=PD×4=﹣(t+2)2+4
∴当t=﹣2时,△ACP最大面积4.
【点睛】
本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.
20、(1)见解析;(2)见解析.
【解析】
(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;
(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.
【详解】
证明:(1)是的中点,
,
,
,
又,
,
,
又是的中线,
,
又,
四边形是平行四边形;
(2),
,
∴,即,
,
又,
,
又是的中线,
,
又四边形是平行四边形,
四边形是矩形.
【点睛】
本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.
21、(1);(2)-1;
【解析】
(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;
(2)根据分式的除法和减法可以解答本题.
【详解】
(1)
=
=2-.
(2)
=
=
=
=
=-1
【点睛】
本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.
22、 (1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.
【解析】
(1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q′,根据m>n结合图像即可得到x0的取值范围.
【详解】
(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,
因此,二次函数的表达式为:y=x2-2x-3;
(2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0).
当y=kx+b(k≠0)经过(3,0)时,3k+b=0;
当y=kx+b(k≠0)经过(-1,0)时,k=b.
(3)将二次函数y=x2-2x-3的图象向右平移2个单位得到y=x2-6x+5,
对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),
若点P(x0,m)使得m>n,结合图象可以得出x0<2或x0>1.
【点睛】
本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.
23、(I)见解析;(II)见解析;(III)见解析.
【解析】
(I)根据两种方式的收费标准分别计算,填表即可;
(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;
(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.
【详解】
(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,
当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,
填表如下:
(II)当0≤t≤25时,y1=30,
当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,
所以y1=;
当0≤t≤50时,y2=50,
当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,
所以y2=;
(III)当75<t<100时,选用C种计费方式省钱.理由如下:
当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,
当t=75时,y1=180,y2=125,y3=120,
所以当75<t<100时,选用C种计费方式省钱.
【点睛】
本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.
24、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
【解析】
(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
【详解】
解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
根据题意,得,
解得
答:每部型手机的销售利润为元,每部型手机的销售利润为元.
(2)①根据题意,得,即.
②根据题意,得,解得.
,,
随的增大而减小.
为正整数,
当时,取最大值,.
即手机店购进部型手机和部型手机的销售利润最大.
(3)根据题意,得.
即,.
①当时,随的增大而减小,
当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
③当时,,随的增大而增大,
当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
【点睛】
本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
25、(1)证明见解析;(2)
【解析】
试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
试题解析:(1)连结OB,则OA=OB.如图1,
∵OP⊥AB,
∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
在△PAO和△PBO中,
∵,
∴△PAO≌△PBO(SSS),
∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
(2)连结BE.如图2,
∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
∵AC=BC,OA=OE,即OC为△ABE的中位线.
∴OC=BE,OC∥BE,∴BE=2OC=3.
∵BE∥OP,∴△DBE∽△DPO,
∴,即,解得BD=.
26、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.
【解析】
(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;
(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.
【详解】
解:∵B(2,﹣4)在反比例函数y=的图象上,
∴m=2×(﹣4)=﹣8,
∴反比例函数解析式为:y=﹣,
把A(﹣4,n)代入y=﹣,
得﹣4n=﹣8,解得n=2,
则A点坐标为(﹣4,2).
把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,
得,解得,
∴一次函数的解析式为y=﹣x﹣2;
(2)∵y=﹣x﹣2,
∴当﹣x﹣2=0时,x=﹣2,
∴点C的坐标为:(﹣2,0),
△AOB的面积=△AOC的面积+△COB的面积
=×2×2+×2×4
=6;
(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.
【点睛】
本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.
27、(20-5)千米.
【解析】
分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
详解:过点B作BD⊥ AC,
依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
∵BD⊥AC,
∴∠ABD=30°,∠CBD=53°,
在Rt△ABD中,设AD=x,
∴tan∠ABD=
即tan30°=,
∴BD=x,
在Rt△DCB中,
∴tan∠CBD=
即tan53°=,
∴CD=
∵CD+AD=AC,
∴x+=13,解得,x=
∴BD=12-,
在Rt△BDC中,
∴cs∠CBD=tan60°=,
即:BC=(千米),
故B、C两地的距离为(20-5)千米.
点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
种子粒数
100
400
800
1 000
2 000
5 000
发芽种子粒数
85
318
652
793
1 604
4 005
发芽频率
0.850
0.795
0.815
0.793
0.802
0.801
收费方式
月使用费/元
包时上网时间/h
超时费/(元/min)
A
30
25
0.05
B
50
50
0.05
C
120
不限时
月费/元
上网时间/h
超时费/(元)
总费用/(元)
方式A
30
40
方式B
50
100
月费/元
上网时间/h
超时费/(元)
总费用/(元)
方式A
30
40
45
75
方式B
50
100
150
200
浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高等内容,欢迎下载使用。
山西省壶关县市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份山西省壶关县市级名校2021-2022学年中考数学模拟预测题含解析,共20页。试卷主要包含了不等式组 的整数解有,对于不等式组,下列说法正确的是等内容,欢迎下载使用。
山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果正确的是等内容,欢迎下载使用。

