【假期知识回顾】专题05 轴对称(知识清单)-2021-2022学年上学期八年级数学(人教版)
展开专题05轴对称
轴对称图形
如果一个图形沿某,直线两旁的部分能够,这个图形就叫做轴对称图形,这条直线就是它的.
有的轴对称图形的对称轴不止一条,如圆就有条对称轴.
轴对称
有一个图形沿着某一条,如果它能够与重合,那么就说这两个图形关于这条对称,这条直线叫做,折叠后重合的点是点,叫做点.两个图形关于直线对称也叫做.
图形轴对称的性质
如果两个图形成称,那么对称轴是;轴对称图形的对称轴是.
轴对称与轴对称图形的区别
轴对称是指两个图形之间的与关系,成轴对称的两个图形是;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.
线段的垂直平分线
(1)经过线,叫做这条线段的垂直平分线(或线段的中垂线).
(2)线段的;反过来,与一条线段两个端点距离相等的点在这条线段的上.因此线段的可以看成与线段两个端点的所有点的集合.
轴对称变换
由一个平面图形得到它的轴对称图形叫做变换.
成轴对称的两个图形中的任何一个可以看着由另一个图形经过后得到.
轴对称变换的性质
(1)经过轴对称变换得到的图形与原图形的、完全一样
(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的点.
(3)连接任意一对对应点的线段被对称轴.
作一个图形关于某条直线的轴对称图形
(1)作出一些关键点或特殊点的点.
(2)按原图形的连接方式连接所得到的点,即得到原图形的图形.
关于坐标轴对称
点P(x,y)关于x轴对称的点的坐标是
点P(x,y)关于y轴对称的点的坐标是
关于原点对称
点P(x,y)关于原点对称的点的坐标是
关于坐标轴夹角平分线对称
点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是
点P(x,y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是
关于平行于坐标轴的直线对称
点P(x,y)关于直线x=m对称的点的坐标是;
点P(x,y)关于直线y=n对称的点的坐标是;
等腰三角形
有的三角形是等腰三角形.相等的两条边叫做,另一条边叫做.两腰所夹的角叫做,腰与底边的夹角叫做.
等腰三角形的性质
性质1:等腰三角形的(简写成“等边对”)
性质2:等腰三角形的、、互相重合.
特别的:(1)等腰三角形是图形.
(2)等腰三角形两腰上的、、对应相等.
等腰三角形的判定定理
如果一个三角形有,那么这两个角所对的也相等(简写成“”).
特别的:
(1)有一边上的、、互相的三角形是等腰三角形.
(2)有两边上的的三角形是等腰三角形.
(3)有两边上的的三角形是等腰三角形.
(4)有两边上的的三角形是等腰三角形.
等边三角形
三条边的三角形叫做等边三角形,也叫做.
等边三角形的性质
等边三角形的,并且每一个内角都等于
等边三角形的判定方法
(1)三条边的三角形是等边三角形;
(2)三个的三角形是等边三角形;
(3)有一个角是是等边三角形.
角平分线的性质:在角平分线上的点.
角平分线的判定:在角的平分线上.
三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的相等.
添加辅助线口诀
几何证明难不难,关键常在辅助线;知中点、作中线,倍长中线把线连.
线段垂直平分线,常向两端来连线.线段和差及倍分,延长截取全等现;
公共角、公共边,隐含条件要挖掘;平移对称加旋转,全等图形多变换.
角平分线取一点,可向两边作垂线; 也可将图对折看,对称之后关系现;
角平分线加平行,等腰三角形来添; 角平分线伴垂直,三线合一试试看。

