


高中数学人教B版 (2019)必修 第四册第十一章 立体几何初步本章综合与测试教案
展开
这是一份高中数学人教B版 (2019)必修 第四册第十一章 立体几何初步本章综合与测试教案,共21页。教案主要包含了教学重点,教学难点,变式练习,解题方法等内容,欢迎下载使用。
11.5 综合复习习题课(2)本节课主要复习平面的基本事实与推论、直线与平面、平面与平面的平行及垂直关系的判定、性质定理及其简单应用。线、面的垂直关系是空间位置关系中的核心内容之一,是线面关系中特殊而且重要的一种位置关系,是平面内平行、垂直关系的拓展,是学生进一步研究空间距离和夹角的基础,在教材中起到了承上启下的作用。同时,线、面关系中特殊而且重要的一种位置关系,是平面内平行、垂直关系的拓展,是学生进一步研究空间距离和夹角的基础,在教材中起到了承上启下的作用。同时,线、面垂直关系的转化,能较好的培养和提高学生的转化意识和能力,对学生的空间想象能力的提高有举足轻重的作用。考点教学目标核心素养平面的基本事实与推论通过实例进一步掌握平面的基本事实与推论,用平面的基本事实正面点共线、线共点、点线共面三个典型问题直观想象、数学抽象、逻辑推理空间中的平行关系通过实例进一步掌握空间中线线、线面、面面平行关系的相互转化和综合应用,掌握空间问题和平面问题的转化直观想象、数学抽象、逻辑推理、数学运算空间中的垂直关系通过实例进一步掌握空间中线线、线面、面面垂直关系的相互转化和综合应用,掌握空间问题和平面问题的转化直观想象、数学抽象、逻辑推理、数学运算 【教学重点】空间中线线、线面、面面平行关系的相互转化和综合应用、线线、线面、面面垂直关系的相互转化和综合应用【教学难点】空间问题和平面问题的转化考点1:截面、共点、共线、共面问题例1.如图,在空间四边形中,分别是的中点,分别在上,且.(1)求证:四点共面;(2)设与交于点,求证:三点共线.证明:(1)因为分别为的中点,所以.在中,,所以,所以.所以四点共面.(2)因为,所以,又因为平面,所以平面,同理平面,所以为平面与平面的一个公共点.又平面平面.所以,所以三点共线.【变式练习】如图所示的几何体中,,,,且,,,.求证:直线,,相交于同一点.【解析】证明∵,,∴直线,确定一个平面,并且直线,相交,设.①∵,∴与确定一个平面,∵平面,∴平面.同理平面.又因为平面平面,∴.②由①②可知,,,三线共点,即直线,,相交于同一点.例2.如图,在正方体中,是的中点,画出过点,的平面与平面的交线,并说明理由.【解析】如图,取的中点,连接.又因为是的中点,所以.在正方体中,,所以四边形是平行四边形.所以,所以,所以四点共面.因为平面,平面,平面,平面,所以平面平面.所以过点的平面与平面的交线为.【变式练习】在棱长为4的正方体中,点分别为的中点,则过三点的平面与正方体各个面的交线组成的平面多边形的面积为( )A. B. C. D.【答案】B【解析】如图所示:连接,为中点,易知,四边形为平行四边形,故,,故,故四点共面,故交线组成的平面多边形.,四边形为菱形,,,故.故选:.【解题方法】1.平面的基本性质的应用公理1是判断一条直线是否在某个平面内的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.2.证明点共线问题的常用方法(1)公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理3证明这些点都在交线上;(2)同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题的方法,先证两条直线交于一点,再证明第三条直线经过该点.4.证明点、直线共面问题的常用方法(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.考点2:空间中的位置关系例3. 设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( )A.若,与所成的角相等,则B.若,,则C.若,,则D.若,,则【答案】C【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A错.若,,则或,B错. 若,,则正确. D.若,,则 ,相交或,异面,D错【变式练习】设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )A.若,则 B.若,则C.若,则 D.若,则【答案】D【解析】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.考点3:空间中的平行关系例4.如图,在三棱台DEFABC中,AB=2DE,点G,H分别为AC,BC的中点.求证:BD∥平面FGH.【证明】 如图,连接DG,CD,设CD∩FG=O,连接OH.在三棱台DEFABC中,AB=2DE,点G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,所以点O为CD的中点.又因为点H为BC的中点,所以OH∥BD.又因为OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.例5. 如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.【解】 (1)证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC,同理可证EF∥BC,因此GH∥EF.(2)连接AC,BD交于点O,BD交EF于点K,连接OP,GK,因为PA=PC,点O是AC的中点,所以PO⊥AC,同理可得PO⊥BD,又BD∩AC=O,且AC,BD都在底面内,所以PO⊥底面ABCD,又因为平面GEFH⊥平面ABCD,且PO⊄平面GEFH,所以PO∥平面GEFH,因为平面PBD∩平面GEFH=GK,所以PO∥GK,且GK⊥底面ABCD,从而GK⊥EF,所以GK是梯形GEFH的高,由AB=8,EB=2得EB:AB=KB:DB=1:4,从而KB=BD=OB,即点K是OB的中点.再由PO∥GK得GK=PO,即点G是PB的中点,同理GH=BC=4,由已知可得OB=4,PO===6,所以GK=3,故四边形GEFH的面积S=·GK=×3=18.例6. 如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l.证明:(1)由题设知BB1//DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1//B1C1//BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCDA1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.【解题方法】1.线线、线面、面面平行间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β. 考点4:空间中的垂直关系例7.如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.【证明】 (1)在四棱锥PABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD,又∵AC⊥CD,且PA∩AC=A,∴CD⊥平面PAC.又AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥AB.又∵AB⊥AD,且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE. 例8.如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【证明】 (1)在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F. 例9. 如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明:(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC. 【解题方法】1.证明线面垂直的方法(1)线面垂直的定义:a与α内任何直线都垂直⇔a⊥α;(2)判定定理1:⇒l⊥α;(3)判定定理2:a∥b,a⊥α⇒b⊥α;(4)面面平行的性质:α∥β,a⊥α⇒a⊥β;(5)面面垂直的性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.2.证明线线垂直的方法(1)定义:两条直线所成的角为90°;(2)平面几何中证明线线垂直的方法;(3)线面垂直的性质:a⊥α,b⊂α⇒a⊥b;(4)线面垂直的性质:a⊥α,b∥α⇒a⊥b.3.证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:a⊂α,a⊥β⇒α⊥β.4.转化思想:垂直关系的转化在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.考点5:空间角的计算例10.如图,二面角的大小是60°,线段.,与所成的角为30°.则与平面所成的角的正弦值是 .【答案】【解析】试题分析:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D,连接AD,有三垂线定理可知AD⊥l,故∠ADC为二面角α-l-β的平面角,为60°,又由已知,∠ABD=30°,连接CB,则∠ABC为AB与平面β所成的角设AD=2,则AC=,CD=1AB==4∴sin∠ABC==;故答案为.例11. 已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为( )
A. B.C. D.【答案】B【解析】如图,,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,,;在中,,;在中,,,.故选:B例12.已知四棱锥的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为,SE与平面ABCD所成的角为β,二面角S-AB-C的平面角为,则( )A. B. C. D.【答案】C【解析】四棱锥的底面是正方形,侧棱长均相等,所以四棱锥为正四棱锥,(1)过作,交于,过底面中心作交于,连接,取中点,连接,如下图(1)所示:则;(2)连接 如下图(2)所示,则;(3)连接,则 ,如下图(3)所示: 因为 所以,而均为锐角,所以故选:C.【解题方法】1.求异面直线所成的角的一般步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且直线对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.2. 求直线和平面所成角的步骤:①寻找过斜线上一点与平面垂直的直线;②连接垂足和斜足间得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.3. 方法一(定义法):在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB为二面角α-a-β的平面角.方法二(垂线法):过二面角的一个面内的一点作另一个平面的垂线,过垂足作棱的垂线,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠AFE为二面角A-BC-D的平面角.方法三(垂面法):过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即二面角的平面角.如图所示,∠AOB为二面角α-l-β的平面角.小结:1. 平面的基本事实与推论2. 线线、线面、面面平行间的转化3. 垂直关系的转化4.线线角、线面角、面面角
相关教案
这是一份高中数学第十一章 立体几何初步11.1 空间几何体11.1.4 棱锥与棱台教学设计,共12页。教案主要包含了情境与问题,达标检测,小结,课时练等内容,欢迎下载使用。
这是一份高中数学人教B版 (2019)必修 第四册第十一章 立体几何初步11.1 空间几何体本节综合与测试第1课时教案,共21页。教案主要包含了教学重点,教学难点等内容,欢迎下载使用。
这是一份高中人教B版 (2019)10.2.2 复数的乘法与除法教案,共14页。教案主要包含了教学重点,教学难点,典型例题,变式练习等内容,欢迎下载使用。