开学活动
搜索
    上传资料 赚现金

    黑龙江省安达市四平中学2024年数学九年级第一学期开学达标测试试题【含答案】

    黑龙江省安达市四平中学2024年数学九年级第一学期开学达标测试试题【含答案】第1页
    黑龙江省安达市四平中学2024年数学九年级第一学期开学达标测试试题【含答案】第2页
    黑龙江省安达市四平中学2024年数学九年级第一学期开学达标测试试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省安达市四平中学2024年数学九年级第一学期开学达标测试试题【含答案】

    展开

    这是一份黑龙江省安达市四平中学2024年数学九年级第一学期开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示,是半圆的直径,点从点出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )
    A.B.C.D.
    2、(4分)使分式有意义的的值是( )
    A.B.C.D.
    3、(4分)若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )
    A.k>1B.k<1C.k>1且k≠0D.k<1且k≠0
    4、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过B点作于点G,延长BG交AD于点H. 在下列结论中:①AH=DF;②∠AEF=45°;③. 其中不正确的结论有( )
    A.1个B.2个C.3个D.0个
    5、(4分)数据2,3,3,5,6,10,13的中位数为( )
    A.5B.4C.3D.6
    6、(4分)如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是( )
    A.B.C.D.
    7、(4分)方程中二次项系数一次项系数和常数项分别是( )
    A.1,-3,1B.-1,-3,1C.-3,3,-1D.1,3,-1
    8、(4分)若是三角形的三边长,则式子的值( ).
    A.小于0B.等于0C.大于0D.不能确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.
    10、(4分)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.
    11、(4分) 如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(6,8),则点C的坐标是_____.
    12、(4分)如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).
    13、(4分)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PE⊥AC于F,则EF的最小值_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某校学生会干部对校学生会倡导的“牵手特殊教育”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).己知A、B两组捐款人数的比为1: 5.
    请结合以上信息解答下列问题.
    (1)a= ,本次调查样本的容量是 ;
    (2)先求出C组的人数,再补全“捐款人数分组统计图1”
    (3)根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在20至40元之间.
    15、(8分) “母亲节”前夕,某花店用3000元购进了第一批盒装花,上市后很快售完,接着又用4000元购进第二批盒装花.已知第二批所购花的进价比第一批每盒少3元,且数量是第一批盒数的1.5倍.问第一批盒装花每盒的进价是多少元?
    16、(8分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
    (1)经过多长时间,四边形PQCD是平行四边形?
    (2)经过多长时间,四边形PQBA是矩形?
    (3)经过多长时间,当PQ不平行于CD时,有PQ=CD.
    17、(10分)问题背景
    如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
    类比探究
    如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
    (1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
    (2)△DEF是否为正三角形?请说明理由.
    (3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
    18、(10分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,
    (1)求v关于t的函数表达式,并写出自变量t的取值范围;
    (2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知,则比较大小2_____3(填“<“或“>”)
    20、(4分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=___.
    21、(4分)如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.
    22、(4分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.
    23、(4分)已知一次函数和函数,当时,x的取值范围是______________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平行四边形中,和的平分线交于的延长线交于,是猜想:
    (1)与的位置关系?
    (2)在的什么位置上?并证明你的猜想.
    (3)若,则点到距离是多少?
    25、(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.
    (1)求直线y=kx+b(k≠0)的表达式;
    (2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.
    26、(12分)如图(1) ,折叠平行四边形,使得分别落在边上的点,为折痕
    (1)若,证明:平行四边形是菱形;
    (2)若 ,求的大小;
    (3)如图(2) ,以为邻边作平行四边形,若,求的大小
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    依题意,可以知道点P从O到A匀速运动时,OP的长s逐渐变大;在上运动时,长度s不变;从B到O匀速运动时,OP的长s逐渐变小直至为1.依此即可求解.
    【详解】
    解:可以看出从O到A逐渐变大,而弧AB中的半径不变,从B到O中OP逐渐减少直至为1.
    故选:D.
    此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.
    2、D
    【解析】
    分式有意义的条件是分母不等于0,即x﹣1≠0,解得x的取值范围.
    【详解】
    若分式有意义,则x﹣1≠0,解得:x≠1.
    故选D.
    本题考查了分式有意义的条件:当分母不为0时,分式有意义.
    3、D
    【解析】
    根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
    【详解】
    ∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
    ∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
    解得k<1且k≠1.
    ∴k的取值范围为k<1且k≠1.
    故选D.
    本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
    4、A
    【解析】
    先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.
    【详解】
    ∵BD是正方形ABCD的对角线,
    ∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
    ∵BE=BC,
    ∴AB=BE,
    ∵BG⊥AE,
    ∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,
    在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
    ∵∠AGH=90°,
    ∴∠DAE=∠ABH=22.5°,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴∠DAE=∠DCE=22.5°,
    ∴∠ABH=∠DCF,
    在Rt△ABH和Rt△DCF中

    ∴Rt△ABH≌Rt△DCF,
    ∴AH=DF,∠CFD=∠AHB=67.5°,
    ∵∠CFD=∠EAF+∠AEF,
    ∴67.5°=22.5°+∠AEF,
    ∴∠AEF=45°,故①②正确;
    如图,连接HE,
    ∵BH是AE垂直平分线,
    ∴AG=EG,
    ∴S△AGH=S△HEG,
    ∵AH=HE,
    ∴∠AHG=∠EHG=67.5°,
    ∴∠DHE=45°,
    ∵∠ADE=45°,
    ∴∠DEH=90°,∠DHE=∠HDE=45°,
    ∴EH=ED,
    ∴△DEH是等腰直角三角形,
    ∵EF不垂直DH,
    ∴FH≠FD,
    ∴S△EFH≠S△EFD,
    ∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
    ∴正确的是①②,
    故选A.
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.
    5、A
    【解析】
    根据中位数的定义: 中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,即可得解.
    【详解】
    根据中位数的定义,得
    5为其中位数,
    故答案为A.
    此题主要考查中位数的定义,熟练掌握,即可解题.
    6、B
    【解析】
    取DC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、E、D三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
    【详解】
    取中点,连接、、,


    在中,利用勾股定理可得.
    在中,根据三角形三边关系可知,
    当、、三点共线时,最大为.
    故选:.
    本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
    7、A
    【解析】
    先把方程化为一般形式,然后可得二次项系数,一次项系数及常数项.
    【详解】
    解:把方程转化为一般形式得:x2−3x+1=0,
    ∴二次项系数,一次项系数和常数项分别是1,−3,1.
    故选:A.
    一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
    8、A
    【解析】
    先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.
    【详解】
    解:=(a-b+c)(a-b-c)
    根据三角形两边之和大于第三边,两边之差小于第三边,
    (a-c+b)(a-c-b)

    相关试卷

    黑龙江省安达市吉星岗镇第一中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】:

    这是一份黑龙江省安达市吉星岗镇第一中学2024-2025学年数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届黑龙江省安达市一中学数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2025届黑龙江省安达市一中学数学九年级第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黑龙江省安达市四平中学2023-2024学年九上数学期末达标检测模拟试题含答案:

    这是一份黑龙江省安达市四平中学2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知,如图,已知点E,二次函数y=等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map