开学活动
搜索
    上传资料 赚现金

    2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】

    2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】第1页
    2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】第2页
    2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】

    展开

    这是一份2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知菱形ABCD的面积是120,对角线AC=24,则菱形ABCD的周长是( )
    A.52B.40C.39D.26
    2、(4分)用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设( )
    A.直角三角形的每个锐角都小于45°
    B.直角三角形有一个锐角大于45°
    C.直角三角形的每个锐角都大于45°
    D.直角三角形有一个锐角小于45°
    3、(4分)菱形的对角线不一定具有的性质是( )
    A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等
    4、(4分)下列变形错误的是( )
    A.B.
    C.D.
    5、(4分)已知直线,则下列说法中正确的是( )
    A.这条直线与轴交点在正半轴上,与轴交点在正半轴上
    B.这条直线与轴交点在正半轴上,与轴交点在负半轴上
    C.这条直线与轴交点在负半轴上,与轴交点在正半轴上
    D.这条直线与轴交点在负半轴上,与轴交点在负半轴上
    6、(4分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是( )
    A.2B.4C.D.
    7、(4分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是( )
    A.12B.14C.16D.18
    8、(4分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()
    A.16B.18C.24D.32
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在中,若∠A=38°,则∠C=____________
    10、(4分)已知x+y=0.2,2x+3y=2.2,则x2+4xy+4y2=_____.
    11、(4分)如图,在中,点在上,请再添加一个适当的条件,使与相似,那么要添加的条件是__________.(只填一个即可)
    12、(4分)当x______时,分式有意义.
    13、(4分)如图,反比例函数与正比例函数和的图像分别交于点A(2,2)和B(b,3),则关于x的不等式组的解集为___________。
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商场购进一批运动服,销售时标价为每件100元,若按七折销售则可获利40%.为尽快减少库存,现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+10)件.
    (1)运动服的进价是每件______元;
    (2)促销期间,每天若要获得500元的利润,则x的值为多少?
    15、(8分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E. F.
    (1)求证:△BCF≌△BA1D.
    (2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.
    16、(8分)(1)化简;(m+2+)•
    (2)先化简,再求值;(+x+2)÷,其中|x|=2
    17、(10分)如图,在平面直角坐标系中,直线与双曲线交于第一、三象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为1.
    (1)求反比例函数和一次函数的函数表达式;
    (2)连接,求四边形的面积;
    (3)在(1)的条件下,根据图像直接写出反比例函数的值小于一次函数的值时,自变量的取值范围.
    18、(10分)已知,一次函数的图象与x轴、y轴分别交于点A和B.
    求A,B两点的坐标,并在如图的坐标系中画出函数的图象;
    若点C在第一象限,点D在x轴的正半轴上,且四边形ABCD是菱形,直接写出C,D两点的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形OMNP的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD、OMNP的边长都是4cm,则图中重合部分的面积是_____cm1.
    20、(4分)如图,已知等边△ABC的边长为10,P是△ABC内一点,PD平行AC,PE平行AD,PF平行BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF= _______________.
    21、(4分)甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:
    则四个人中成绩最稳定的是______.
    22、(4分)如图,正方形ABCD的面积为,则图中阴影部分的面积为______________ .
    23、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为 _________________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
    (1)求证:OE=OF;
    (2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
    25、(10分)某水厂为了了解小区居民的用水情况,随机抽查了小区10户家庭的月用水量,结果如下表:
    如果小区有500户家庭,请你估计小区居民每月(按30天计算)共用水多少立方米?(答案用科学记数法表示)
    26、(12分)实践与探究
    宽与长的比是(约0.618)的矩形叫做黄金矩形。黄金矩形给我们以协调、均匀的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。
    下面我们通过折纸得到黄金矩形。
    第一步,在一张矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平。
    第二步,如图2,把这个正方形折成两个相等的矩形,再把纸片展平,折痕是。
    第三步,折出内侧矩形的对角线,并把折到图3中所示的处,折痕为。
    第四步,展平纸片,按照所得的点折出,使;过点折出折痕,使。
    (1)上述第三步将折到处后,得到一个四边形,请判断四边形的形状,并说明理由。
    (2)上述第四步折出折痕后得到一个四边形,这个四边形是黄金矩形,请你说明理由。(提示:设的长度为2)
    (3)在图4中,再找出一个黄金矩形_______________________________(黄金矩形除外,直接写出答案,不需证明,可能参考数值:)
    (4)请你举一个采用了黄金矩形设计的世界名建筑_________________________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    先利用菱形的面积公式计算出BD=10,然后根据菱形的性质和勾股定理可计算出菱形的边长=13,从而得到菱形的周长.
    【详解】
    ∵菱形ABCD的面积是120,
    即×AC×BD=120,
    ∴BD==10,
    ∴菱形的边长==13,
    ∴菱形ABCD的周长=4×13=1.
    故选A.
    本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积计算可利用平行四边形的面积公式计算,也可利用菱形面积=ab(a、b是两条对角线的长度)进行计算.
    2、A
    【解析】
    分析:找出原命题的方面即可得出假设的条件.
    详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.
    点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.
    3、D
    【解析】
    根据菱形的对角线性质,即可得出答案.
    【详解】
    解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,
    ∴菱形的对角线不一定具有的性质是相等;
    故选:D.
    此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.
    4、D
    【解析】
    试题解析:A选项分子和分母同时除以最大公因式;B选项的分子和分母互为相反数;C选项分子和分母同时除以最大公因式,D选项正确的变形是所以答案是D选项
    故选D.
    5、C
    【解析】
    先确定直线y=kx+b经过第一、二、三限,即可对各选项进行判断.
    【详解】
    解:∵直线y=kx+b,k>0,b>0,
    ∴直线y=kx+b经过第一、二、三象限,
    故选:C.
    本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.
    6、B
    【解析】
    解:在矩形ABCD中,OA=OC,OB=OD,AC=BD,∴OA=OC.
    ∵∠AOD=60°,
    ∴△OAB是等边三角形.∴OA=AD=1.
    ∴AC=1OA=1×1=2.
    故选B.
    7、B
    【解析】
    延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.
    【详解】
    延长BN交AC于D,
    在△ANB和△AND中,

    ∴△ANB≌△AND,
    ∴AD=AB=8,BN=ND,
    ∵M是△ABC的边BC的中点,
    ∴DC=2MN=6,
    ∴AC=AD+CD=14,
    故选B.
    本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
    8、C
    【解析】
    过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再根据S△ABC=S△BCD+S△ABD列式计算即可得解.
    【详解】
    如图,过点D作DE⊥AB于E,
    ∵∠ACB=90°,BD平分∠ABC,
    ∴DE=CD=3,
    ∴S△ABC=S△BCD+S△ABD=BC⋅CD+AB⋅DE= (BC+AB)×3
    ∵BC+AB=16,
    ∴△ABC的面积=×16×3=24.
    故选C.
    本题考查角平分线的性质定理,作辅助线是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、38°
    【解析】
    根据平行四边形对角相等即可求解.
    【详解】
    解:∵平行四边形ABCD中,∠A=38°,
    ∴∠C=∠A=38°,
    故答案为:38°.
    本题考查了平行四边形的性质,要知道平行四边形对角相等.
    10、4
    【解析】
    因为x2+4xy+4y2=(x+2y)²,只要求出x+2y即可,因为2x+3y=2.2减去x+y=0.2,刚好得到x+2y=2,所以结果为4,当然后你也可以用解二元一次方程组求出x,y然后再求代数x2+4xy+4y2的值
    【详解】
    解:用方程+3y=2.2减去方程x+y=0.2,得x+2y=2,故x2+4xy+4y2=(x+2y)²=4
    本题利用了整式的乘法解决的,还可以用解一元二次方程的方法求解。
    11、或
    【解析】
    已知与的公共角相等,根据两角对应相等的两个三角形相似再添加一组对应角相等即可.
    【详解】
    解:(公共角)
    (或)
    (两角对应相等的两个三角形相似)
    故答案为:或
    本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.
    12、≠
    【解析】
    试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.
    由题意得,.
    考点:分式有意义的条件
    点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.
    13、
    【解析】
    把点A(2,2)代入得k=4得到。可求B()由函数图像可知的解集是:
    【详解】
    解:把点A(2,2)代入得:
    ∴k=4

    当y=3时

    ∴B()
    由函数图像可知的解集是:
    本题考查了反比例函数和一次函数的交点问题,掌握求反比例函数解析式,及点的坐标,以及由函数求出不等式的解集.
    三、解答题(本大题共5个小题,共48分)
    14、(1)52;(2)x的值为3.5或1.
    【解析】
    (1)设进价为a元,根据“销售时标价为每件12元,若按七折销售则可获利42%.”列出方程,求出方程的解即可得到结果;
    (2)根据“现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+1)件列出方程”,列出利润522=(32-x-52)(4x+1),求出方程的解即可得到结果.
    【详解】
    解:(1)设进价为a元,
    根据题意得:(1+42%)a=12×2.3,
    解得:a=52,
    则运动服的进价是每件52元;
    故答案为:52;
    (2)根据题意得:(32-x-52)(4x+1)=522,
    (22-x)(2x+5)=252,即2x2-35x+152=2,
    分解因式得:(2x-15)(x-1)=2,
    解得:x=3.5或x=1,
    则x的值为3.5或1.
    此题考查一元二次方程的应用,弄清题意再根据题意列出方程是解题的关键.
    15、 (1)证明见解析(2)四边形A1BCE是菱形
    【解析】
    (1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.
    【详解】
    (1)证明:∵△ABC是等腰三角形,
    ∴AB=BC,∠A=∠C,
    ∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,
    ∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
    在△BCF与△BA1D中,

    ∴△BCF≌△BA1D;
    (2)解:四边形A1BCE是菱形,
    ∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,
    ∴∠A1=∠A,
    ∵∠ADE=∠A1DB,
    ∴∠AED=∠A1BD=α,
    ∴∠DEC=180°﹣α,
    ∵∠C=α,
    ∴∠A1=α,
    ∴∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,
    ∴∠A1=∠C,∠A1BC=∠A1EC,
    ∴四边形A1BCE是平行四边形,
    ∴A1B=BC,
    ∴四边形A1BCE是菱形.
    考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.
    16、(1)m+1;(2)1
    【解析】
    (1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.
    (2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.
    【详解】
    解:(1)原式==m+1;
    (2)原式= ,
    由|x|=2,得到x=2或﹣2(舍去),
    当x=2时,原式=1.
    此题考查分式的化简求值,解题关键在于掌握运算法则.
    17、(1)反比例函数解析式为;一次函数解析式为;(2)1;
    (3)或.
    【解析】
    (1)根据BM⊥轴,可知△BMO为等腰直角三角形,可求得点B的坐标,将其代入反比例函数,求出,即可知反比例函数解析式,已知点A的纵坐标,代入求得的反比例函数解析式,可求得点A的横坐标,再利用待定系数法,即可求得一次函数解析式;
    (2)一次函数与y轴交于点C,可求得C的坐标,易证四边形MBOC是平行四边形,OM即为高,四边形的面积即可求解;
    (3)要使反比例函数的值小于一次函数的值,反比例函数图像一定在一次函数图像的下方,观察图像,即可求解自变量的取值范围.
    【详解】
    解:(1)∵BM⊥轴,且BM=OM,
    ∴△BMO为等腰直角三角形,
    ∵OB=,
    ∴BM=OM=2,
    ∴点B的坐标为(-2,-2),
    ∵点B在双曲线上,代入 ,可求得,
    故反比例函数的解析式为,
    ∵点A 也是反比例函数上的点,且A点的纵坐标为1,代入,
    求得A点坐标为(1,1),
    ∵点A、B也是直线上的点,
    ∴ ,解得 .
    故一次函数的解析式为.
    (2)∵ 一次函数与轴交于点C, 将代入解析式,可求得C点的坐标为(0,2)
    ∴ BM=OC,又∵BM//OC,
    ∴四边形MBOC是平行四边形,OM即为平行四边形MBOC的高,
    ∴四边形MBOC的面积,
    故四边形MBOC的面积为1.
    (3)根据图像观察可知,要使反比例函数的值小于一次函数的值时,反比例函数图像一定在一次函数图像的下方,包括A(1,1)的右侧,以及B(-2,-2)到轴这两部分,从而可知,自变量的取值范围是:或.
    故答案为:或.
    本题目考查函数的综合,难度一般,涉及知识点有反比例函数、一次函数,待定系数法等,熟练掌握两种函数的性质是顺利解题的关键.
    18、 (1) A,B,画图见解析;(2),.
    【解析】
    (1)先求出A,B两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D的坐标.
    【详解】
    解:将代入,可得;
    将,代入,可得;
    点A的坐标为,点B的坐标为,
    如图所示,直线AB即为所求;
    由点A的坐标为,点B的坐标为,可得
    ,,
    中,,
    四边形ABCD是菱形,


    ,.
    本题考核知识点:一次函数与菱形. 解题关键点:熟记菱形的判定与性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2.
    【解析】
    根据题意可得:△AOG≌△DOF(ASA),所以S四边形OFDG=S△AOD=S 正方形ABCD,从而可求得其面积.
    【详解】
    解:如图,∵正方形ABCD和正方形OMNP的边长都是2cm,

    ∴OA=OD,∠AOD=∠POM=90°,∠OAG=∠ODF=25°,
    ∴∠AOG=∠DOF,
    在△AOG和△DOF中,
    ∵ ,
    ∴△AOG≌△DOF(ASA),
    ∴S四边形OFDG=S△AOD=S 正方形ABCD=× =2;
    则图中重叠部分的面积是2cm1,
    故答案为:2.
    本题考查正方形的性质,题中重合的部分的面积是不变的,且总是等于正方形ABCD面积的.
    20、1
    【解析】
    延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,再根据平行四边形及等边三角形的性质得到PD=DH,PE=HC,PF=BD,故可求出PD+PE+PF的长.
    【详解】
    如图,延长EP、FP分别交AB、BC于G、H,
    由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,
    ∴PG=BD,PE=HC
    又∵△ABC是等边三角形,
    且PF∥AC,PD∥AB,可得△PFG,△PDH是等边三角形,
    ∴PF=PG=BD,PD=DH
    ∴PD+PE+PF=DH+GP+HC=DH+BD+HC=BC=1
    故答案为:1.
    此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及等边三角形的判定与性质.
    21、甲
    【解析】
    根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.
    【详解】
    解:,
    四个人中成绩最稳定的是甲.
    故答案为:甲.
    此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    22、
    【解析】
    试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.
    23、12
    【解析】
    ∵BD⊥AD,AD=6,AB=10,
    ,
    ∴ .
    ∵四边形ABCD是平行四边形,

    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形,理由见解析.
    【解析】
    (1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;
    (2)根据平行四边形的判定先证明AECF是平行四边形,再由证明是矩形即可.
    【详解】
    (1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
    ∴∠2=∠5,∠4=∠6,
    ∵MN∥BC,
    ∴∠1=∠5,∠3=∠6,
    ∴∠1=∠2,∠3=∠4,
    ∴EO=CO,FO=CO,
    ∴OE=OF;
    (2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.
    理由是:当O为AC的中点时,AO=CO,
    ∵EO=FO,
    ∴四边形AECF是平行四边形,
    由题意可知CE平分∠ACB,CF平分∠ACB,


    ∴平行四边形AECF是矩形.
    本题主要考查了矩形的判定、平行四边形的判定等知识,根据已知得出∠ECF=90°是解题关键.
    25、该小区居民每月共用水约为立方米.
    【解析】
    根据平均数的概念计算,并用样本平均数去计算该小区居民每月用水量.
    【详解】
    解:由已知得:10户家庭平均每户月用水量为
    (立方米)
    答:该小区居民每月共用水约为立方米.
    考查了平均数的计算和用样本估计总体的知识,解题关键是抓住用样本平均数去计算该小区居民每月用水量.
    26、(1)四边形是菱形,见解析;(2)见解析;(3)黄金矩形(或黄金矩形);(4)希腊的巴特农神庙(或巴黎圣母院).
    【解析】
    (1)根据菱形的判定即可求解;
    (2)根据菱形的性质及折叠得到,即可证明;
    (3)
    【详解】
    (1)解:
    四边形是菱形,
    理由如下:
    由矩形纸片可得,
    ∴,
    由折叠可得,
    ∴,
    ∴,
    又由折叠可得,
    ∴,
    ∴四边形是菱形;
    (2)证明:设的长度为2,
    由正方形可得,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴四边形是矩形,
    ∵,由折叠可得,,
    在中,根据勾股定理,,
    由折叠可得,
    ∴,
    ∴,
    ∴矩形是黄金矩形;
    (3)黄金矩形
    理由:AG=AD+DG=AB+DG=
    AH=2,

    ∴四边形AGEH为黄金矩形
    (4)希腊的巴特农神庙(或巴黎圣母院)
    此题主要考查矩形的性质与判定,解题的关键是熟知特殊平行四边形的判定与性质.
    题号





    总分
    得分




    方差
    月用水量()
    10
    13
    14
    17
    18
    户数
    2
    2
    3
    2
    1

    相关试卷

    2024年三亚市重点中学九上数学开学学业水平测试试题【含答案】:

    这是一份2024年三亚市重点中学九上数学开学学业水平测试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年宁夏吴忠市名校九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2024年宁夏吴忠市名校九上数学开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年那曲市数学九上开学学业水平测试试题【含答案】:

    这是一份2024年那曲市数学九上开学学业水平测试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map