开学活动
搜索
    上传资料 赚现金

    模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解)

    模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解)第1页
    模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解)第2页
    模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解)

    展开

    这是一份模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解),共29页。试卷主要包含了如图,某汽车离开某城市的距离y,下列方程中,解为的方程是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、单项式的次数是( )
    A.1B.2C.3D.4
    2、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
    A.B.C.D.
    3、如图是一个运算程序,若x的值为,则运算结果为( )
    A.B.C.2D.4
    4、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
    A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
    C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
    5、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.30km/hB.60km/hC.70km/hD.90km/h
    6、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
    A.B.C.D.
    7、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
    A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
    8、下列方程中,解为的方程是( )
    A.B.C.D.
    9、如图,①,②,③,④可以判定的条件有( ).
    A.①②④B.①②③C.②③④D.①②③④
    10、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
    A.1B.2C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若,则的值是______.
    2、如图, 已知在 Rt 中, , 将 绕点 逆时针旋转 后得 , 点 落在点 处, 点 落在点 处, 联结 , 作 的平分线 , 交线段 于点 , 交线 段 于点 , 那么 的值为____________.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、如图,和均为等边三角形,,分别在边,上,连接,,若,则__________.
    4、比较大小[(﹣2)3]2___(﹣22)3.(填“>”,“<”或“=”)
    5、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
    (1)由图2可得等式:________;
    (2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
    三、解答题(5小题,每小题10分,共计50分)
    1、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
    (1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
    ①直线;②双曲线;③抛物线.
    (2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
    (3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
    2、如图,已知△ABC.
    (1)请用尺规完成以下作图:延长线段BC,并在线段BC的延长线上截取CD=AC,连接AD;在BD下方,作∠DBE=∠ADB;
    (2)若AB=AC,利用(1)完成的图形,猜想∠ABE与∠DBE存在的数量关系,并证明你的结论;
    (3)若AB=AC=3,BC=4,利用(1)完成的图形,计算AD的长度.
    3、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)求抛物线的对称轴及B点的坐标
    (2)如果,求抛物线的表达式;
    (3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
    4、计算:
    (1);
    (2).
    5、某商品每天可售出300件,每件获利2元.为了尽快减少库存,店主决定降价销售.根据经验可知,如果每件降价0.1元,平均每天可多售出20件,店主要想平均每天获利500元,每件商品应降价多少元?
    -参考答案-
    一、单选题
    1、C
    【分析】
    单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
    【详解】
    解:单项式的次数是3,
    故选C
    【点睛】
    本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
    2、D
    【分析】
    先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
    【详解】
    解:由数轴的性质得:.
    A、,则此项错误;
    B、,则此项错误;
    C、,则此项错误;
    D、,则此项正确;
    故选:D.
    【点睛】
    本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
    3、A
    【分析】
    根据运算程序,根据绝对值的性质计算即可得答案.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    ∵<3,
    ∴=,
    故选:A.
    【点睛】
    本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
    4、C
    【分析】
    函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
    【详解】
    解:函数与函数的图象如下图所示:
    函数的图象是由函数的图象向下平移1个单位长度后得到的,
    A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
    B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
    C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
    D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
    故选:C.
    【点睛】
    本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
    5、B
    【分析】
    直接观察图象可得出结果.
    【详解】
    解:根据函数图象可知:t=1时,y=90;
    ∵汽车是从距离某城市30km开始行驶的,
    ∴该汽车行驶的速度为90-30=60km/h,
    故选:B.
    【点睛】
    本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
    6、A
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A
    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    7、C
    【分析】
    先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
    【详解】
    解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
    ∴选项A不正确;
    a+b>0,选项B不正确;
    ∵a<0,b>0,
    ∴ab<0,选项D不正确;
    ∵a<b,
    ∴a﹣b<0,选项C正确,
    故选:C.
    【点睛】
    本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
    8、D
    【分析】
    求出选项各方程的解即可.
    【详解】
    A、,解得:,不符合题意.
    B、,解得:,不符合题意.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    C、,解得:,不符合题意.
    D、,解得:,符合题意.
    故选:D .
    【点睛】
    此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
    9、A
    【分析】
    根据平行线的判定定理逐个排查即可.
    【详解】
    解:①由于∠1和∠3是同位角,则①可判定;
    ②由于∠2和∠3是内错角,则②可判定;
    ③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
    ④①由于∠2和∠5是同旁内角,则④可判定;
    即①②④可判定.
    故选A.
    【点睛】
    本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
    10、C
    【分析】
    取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
    【详解】
    解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
    ∵点A(1,0),B (3,0),
    ∴OA=1,OB=3,
    ∴OE=2,
    ∴ED=2×=,
    ∵∠ACB=90°,
    ∴点C在以AB为直径的圆上,
    ∴线段CD长的最小值为−1.
    故选:C.
    【点睛】
    本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
    二、填空题
    1、-2
    【解析】
    【分析】
    将的值代入原式=计算可得.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:=
    将代入,原式==-2
    故答案为:-2
    【点睛】
    本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
    2、
    【解析】
    【分析】
    根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.
    【详解】
    如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,
    ∵,
    ∴设,,,
    由旋转可得:,,,
    ∴,,
    ∴,,,
    ∵AN是平分线,
    ∴,
    ∴,即可得,
    ∴,
    设直线BE的解析式为,
    把,代入得:,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解得:,
    ∴,
    当时,,
    解得:,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴.
    故答案为:.
    【点睛】
    本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.
    3、##45度
    【解析】
    【分析】
    根据题意利用全等三角形的判定与性质得出和,进而依据进行计算即可.
    【详解】
    解:∵和均为等边三角形,
    ∴,

    在和中,

    ∴,
    ∴,
    ∴.
    故答案为:.
    【点睛】
    本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
    4、>
    【解析】
    【分析】
    利用幂的乘方和积的乘方先计算[(-2)3]2与(-22)3,再比较大小得结论.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:∵[(-2)3]2=(-2)3×2=(-2)6=26,
    (-22)3=-26,
    又∵26>-26,
    ∴[(-2)3]2>(-22)3.
    故答案为:>.
    【点睛】
    本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方法则是解决本题的关键.
    5、 2
    【解析】
    【分析】
    (1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
    (2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
    【详解】
    解:(1)方法一:图形的面积为,
    方法二:图形的面积为,
    则由图2可得等式为,
    故答案为:;
    (2),


    利用(1)的结论得:,

    ,即,


    故答案为:2.
    【点睛】
    本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
    三、解答题
    1、
    (1)①
    (2)的取值范围是
    (3)或
    【分析】
    (1)根据图形M与图形N是双联图形的定义可直接判断即可;
    (2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
    (3)根据双联图形的宝座进行判断即可.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)
    选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
    又的半径为2,
    ∴这两个图形有且只有两个公共点,
    ∴这两个图形是“双联图形”;
    选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
    故这两个图形不是“双联图形”;
    选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,
    故这两个图形不是“双联图形”;
    ∴选①
    故答案为①;
    (2)
    已知直线与抛物线有且只有两个公共点,
    ∴将代入抛物线中,得,
    配方得,
    ∵方程有实数解,
    ∴即
    又直线不是双曲线的“双联图形”,
    ∴直线与双曲线最多有一个公共点,
    即当时,代入得,,即,
    ∴实数的取值范围是;
    (3)
    ∵是二次函数,

    ∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
    ∴当时,二次函数的图象与的图象没有交点,
    ∴不成立;
    当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
    ∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
    把C(1,4),B(4,0)代入,得

    ∴,
    ∴y=-x+4,
    ∵抛物线与BC不想交,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,即ax2+(2a+1)x+a-1=0无实数根,
    ∴(2a+1)2-4a(a-1)

    相关试卷

    模拟真题湖南省怀化市中考数学五年真题汇总 卷(Ⅲ)(含答案详解):

    这是一份模拟真题湖南省怀化市中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共31页。试卷主要包含了下列函数中,随的增大而减小的是,利用如图①所示的长为a等内容,欢迎下载使用。

    模拟真题湖南省怀化市中考数学历年真题练习 (B)卷(含答案及详解):

    这是一份模拟真题湖南省怀化市中考数学历年真题练习 (B)卷(含答案及详解),共37页。试卷主要包含了下列各式中,不是代数式的是,一元二次方程的根为.,如图,点B,下列现象等内容,欢迎下载使用。

    【真题汇总卷】湖南省中考数学模拟真题测评 A卷(含答案详解):

    这是一份【真题汇总卷】湖南省中考数学模拟真题测评 A卷(含答案详解),共26页。试卷主要包含了一元二次方程的根为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map