开学活动
搜索
    上传资料 赚现金

    2022年山东省临沂市平邑县达标名校中考数学模拟试题含解析

    2022年山东省临沂市平邑县达标名校中考数学模拟试题含解析第1页
    2022年山东省临沂市平邑县达标名校中考数学模拟试题含解析第2页
    2022年山东省临沂市平邑县达标名校中考数学模拟试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省临沂市平邑县达标名校中考数学模拟试题含解析

    展开

    这是一份2022年山东省临沂市平邑县达标名校中考数学模拟试题含解析,共21页。试卷主要包含了计算的结果等于,若分式有意义,则x的取值范围是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为(  )
    A. B. C. D.
    2.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )

    A. B. C. D.
    3.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )

    A. B. C. D
    4.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是  
    已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
    求证:∽.
    证明:又,,,,∽.

    A. B. C. D.
    5.如图所示的四边形,与选项中的一个四边形相似,这个四边形是(  )

    A. B. C. D.
    6.计算的结果等于( )
    A.-5 B.5 C. D.
    7.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )
    A. B. C. D.
    8.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(  )

    A.(﹣) B.(﹣) C.(﹣) D.(﹣)
    9.若分式有意义,则x的取值范围是( )
    A.x>3 B.x<3 C.x≠3 D.x=3
    10.已知为单位向量,=,那么下列结论中错误的是( )
    A.∥ B. C.与方向相同 D.与方向相反
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是_____.
    12.已知抛物线y=ax2+bx+c=0(a≠0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 ________________.
    13.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元
    14.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.

    15.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
    16.如图,在直角坐标系中,⊙A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是______________.

    三、解答题(共8题,共72分)
    17.(8分)(1)(问题发现)小明遇到这样一个问题:
    如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
    (1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
    (2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
    不变),试猜想AD与DE之间的数量关系,并证明你的结论.
    (3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
    请直接写出△ABC与△ADE的面积之比.

    18.(8分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
    (1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。
    (2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。
    19.(8分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
    本次抽样调查了   个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是   度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?
    20.(8分)已知抛物线y=a(x-1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M
    (1)求a的值,并写出点B的坐标;
    (2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DE∥x轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.

    21.(8分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.
    (1)求证:四边形ABCD是平行四边形;
    (2)直接写出图中所有相等的线段(AE=CF除外).

    22.(10分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.

    (1)若a=1,求反比例函数的解析式及b的值;
    (2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
    (3)若a﹣b=4,求一次函数的函数解析式.
    23.(12分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.

    24.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
    求证:△ABE≌△CAD;求∠BFD的度数.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.
    【详解】
    解:设袋子中黄球有x个,
    根据题意,得:,
    解得:x=3,
    即袋中黄球有3个,
    所以随机摸出一个黄球的概率为,
    故选A.
    【点睛】
    此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.
    2、A
    【解析】
    试题分析:观察图形可知,该几何体的主视图是.故选A.
    考点:简单组合体的三视图.
    3、D
    【解析】
    先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
    【详解】
    由题意得,2x+y=10,
    所以,y=-2x+10,
    由三角形的三边关系得,,
    解不等式①得,x>2.5,
    解不等式②的,x<5,
    所以,不等式组的解集是2.5<x<5,
    正确反映y与x之间函数关系的图象是D选项图象.
    故选:D.
    4、B
    【解析】
    根据平行线的性质可得到两组对应角相等,易得解题步骤;
    【详解】
    证明:,

    又,

    ∽.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质;关键是证明三角形相似.
    5、D
    【解析】
    根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.
    【详解】
    解:作AE⊥BC于E,

    则四边形AECD为矩形,
    ∴EC=AD=1,AE=CD=3,
    ∴BE=4,
    由勾股定理得,AB==5,
    ∴四边形ABCD的四条边之比为1:3:5:5,
    D选项中,四条边之比为1:3:5:5,且对应角相等,
    故选D.
    【点睛】
    本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.
    6、A
    【解析】
    根据有理数的除法法则计算可得.
    【详解】
    解:15÷(-3)=-(15÷3)=-5,
    故选:A.
    【点睛】
    本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.
    7、A
    【解析】
    试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.
    考点:概率.
    8、A
    【解析】
    直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
    【详解】
    过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,

    由题意可得:∠C1NO=∠A1MO=90°,
    ∠1=∠2=∠1,
    则△A1OM∽△OC1N,
    ∵OA=5,OC=1,
    ∴OA1=5,A1M=1,
    ∴OM=4,
    ∴设NO=1x,则NC1=4x,OC1=1,
    则(1x)2+(4x)2=9,
    解得:x=±(负数舍去),
    则NO=,NC1=,
    故点C的对应点C1的坐标为:(-,).
    故选A.
    【点睛】
    此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
    9、C
    【解析】
    试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
    考点:分式有意义的条件.
    10、C
    【解析】
    由向量的方向直接判断即可.
    【详解】
    解:为单位向量,=,所以与方向相反,所以C错误,
    故选C.
    【点睛】
    本题考查了向量的方向,是基础题,较简单.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、奇数.
    【解析】
    根据概率的意义,分n是偶数和奇数两种情况分析即可.
    【详解】
    若n为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5,
    若n为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,
    故答案为:奇数.
    【点睛】
    本题考查概率公式,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    12、或x=-1
    【解析】
    由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴.
    【详解】
    ∵点A的坐标为(-2,0),线段AB的长为8,
    ∴点B的坐标为(1,0)或(-10,0).
    ∵抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,
    ∴抛物线的对称轴为直线x==2或x==-1.
    故答案为x=2或x=-1.
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键.
    13、300
    【解析】
    设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.
    【详解】
    设成本为x元,标价为y元,依题意得,解得
    故定价为300元.
    【点睛】
    此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.
    14、
    【解析】

    如图,有5种不同取法;故概率为 .
    15、:k<1.
    【解析】
    ∵一元二次方程有两个不相等的实数根,
    ∴△==4﹣4k>0,
    解得:k<1,
    则k的取值范围是:k<1.
    故答案为k<1.
    16、2
    【解析】
    分析:因为BP=,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用△APC≌△DOC求出AP的长即可求解.
    详解:如图,作AP⊥直线y=x+3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.
    ∵A的坐标为(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,
    ∴DC==5,∴AC=DC,
    在△APC与△DOC中,
    ∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,
    ∴△APC≌△DOC,∴AP=OD=3,
    ∴PB==2.
    故答案为2.

    点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.

    三、解答题(共8题,共72分)
    17、(1)AD=DE;(2)AD=DE,证明见解析;(3).
    【解析】
    试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
    试题解析:(10分)
    (1)AD=DE.
    (2)AD=DE.
    证明:如图2,过点D作DF//AC,交AC于点F,
    ∵△ABC是等边三角形,
    ∴AB=BC,∠B=∠ACB=∠ABC=60°.
    又∵DF//AC,
    ∴∠BDF=∠BFD=60°
    ∴△BDF是等边三角形,BF=BD,∠BFD=60°,
    ∴AF=CD,∠AFD=120°.
    ∵EC是外角的平分线,
    ∠DCE=120°=∠AFD.
    ∵∠ADC是△ABD的外角,
    ∴∠ADC=∠B+∠FAD=60°+∠FAD.
    ∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
    ∴∠FAD=∠EDC.
    ∴△AFD≌△DCE(ASA),
    ∴AD=DE;
    (3).

    考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
    18、(1) ; (2) .
    【解析】
    (1)根据概率=所求情况数与总情况数之比代入解得即可.
    (2)将小明吃到的前两个元宵的所有情况列表出来即可求解.
    【详解】
    (1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是;
    (2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为、,五仁馅的两个分别为、,桂花馅的一个为c):

    由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃到的前两个元宵是同一种馅料的概率是.
    【点睛】
    本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.
    19、 (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.
    【解析】
    (1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;
    (2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;
    (3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;
    (4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.
    【详解】
    解:(1)本次抽样调查的家庭数是:30÷=200(个);
    故答案为200;
    (2)学习0.5﹣1小时的家庭数有:200×=60(个),
    学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),
    补图如下:

    (3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×=36°;
    故答案为36;
    (4)根据题意得:
    3000×=2100(个).
    答:该社区学习时间不少于1小时的家庭约有2100个.
    【点睛】
    本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
    20、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.
    【详解】
    (1)把点A(0,2)代入抛物线的解析式可得,2=a+3,
    ∴a=-1,
    ∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)
    (2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,
    由解得x=
    ∴点C的横坐标为
    ∵MN=m-1,四边形MDEN是正方形,
    ∴C(,m-1)
    把C点代入y=-(x-1)2+3,
    得m-1=-+3,
    解得m=3或-5(舍去)
    ∴平移后的解析式为y=-(x-3)2+3,
    当点C在x轴的下方时,C(,1-m)
    把C点代入y=-(x-1)2+3,
    得1-m=-+3,
    解得m=7或-1(舍去)
    ∴平移后的解析式为y=-(x-7)2+3
    综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.

    【点睛】
    此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.
    21、(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.
    【解析】
    整体分析:
    (1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.
    解:(1)证明:∵AD∥BC,DE∥BF,
    ∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.
    在△ADE和△CBF中,,
    ∴△ADE≌△CBF,∴AD=BC,
    ∴四边形ABCD是平行四边形.
    (2)AD=BC,EC=AF,ED=BF,AB=DC.
    理由如下:
    ∵△ADE≌△CBF,∴AD=BC,ED=BF.
    ∵AE=CF,∴EC=AF.
    ∵四边形ABCD是平行四边形,∴AB=DC.
    22、 (1) 反比例函数的解析式为y=,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1
    【解析】
    (1)由题意得到A(1,4),设反比例函数的解析式为y=(k≠0),根据待定系数法即可得到反比例函数解析式为y=;再由点B(﹣4,b)在反比例函数的图象上,得到b=﹣1;
    (1)由(1)知A(1,4),B(﹣4,﹣1),结合图象即可得到答案;
    (3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,因为A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p=8,a=1,b=﹣1,则A(1,4),B(﹣4,﹣1),由点A、点B在一次函数y=mx+n图象上,得到,解得,即可得到答案.
    【详解】
    (1)若a=1,则A(1,4),
    设反比例函数的解析式为y=(k≠0),
    ∵点A在反比例函数的图象上,
    ∴4=,
    解得k=4,
    ∴反比例函数解析式为y=;
    ∵点B(﹣4,b)在反比例函数的图象上,
    ∴b==﹣1,
    即反比例函数的解析式为y=,b的值为﹣1;
    (1)由(1)知A(1,4),B(﹣4,﹣1),
    根据图象:当x<﹣4或0<x<1时,反比例函数大于一次函数的值;
    (3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,
    ∵A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,
    ∴,即,
    ①+②得4a﹣4b=1p,
    ∵a﹣b=4,
    ∴16=1p,
    解得p=8,
    把p=8代入①得4a=8,代入②得﹣4b=8,
    解得a=1,b=﹣1,
    ∴A(1,4),B(﹣4,﹣1),
    ∵点A、点B在一次函数y=mx+n图象上,

    解得
    ∴一次函数的解析式为y=x+1.
    【点睛】
    本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.
    23、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)
    【解析】
    (1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;
    (1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;
    (3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.
    【详解】
    (1)∵A(﹣4,0)在二次函数y=ax1﹣x+1(a≠0)的图象上,
    ∴0=16a+6+1,
    解得a=﹣,
    ∴抛物线的函数解析式为y=﹣x1﹣x+1;
    ∴点C的坐标为(0,1),
    设直线AC的解析式为y=kx+b,则

    解得,
    ∴直线AC的函数解析式为:;
    (1)∵点D(m,n)是抛物线在第二象限的部分上的一动点,
    ∴D(m,﹣m1﹣m+1),
    过点D作DH⊥x轴于点H,则DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,
    ∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,
    ∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),
    化简,得S=﹣m1﹣4m+4(﹣4<m<0);
    (3)①若AC为平行四边形的一边,则C、E到AF的距离相等,
    ∴|yE|=|yC|=1,
    ∴yE=±1.
    当yE=1时,解方程﹣x1﹣x+1=1得,
    x1=0,x1=﹣3,
    ∴点E的坐标为(﹣3,1);
    当yE=﹣1时,解方程﹣x1﹣x+1=﹣1得,
    x1=,x1=,
    ∴点E的坐标为(,﹣1)或(,﹣1);
    ②若AC为平行四边形的一条对角线,则CE∥AF,
    ∴yE=yC=1,
    ∴点E的坐标为(﹣3,1).
    综上所述,满足条件的点E的坐标为(﹣3,1)、(,﹣1)、(,﹣1).

    24、(1)证明见解析;(2).
    【解析】
    试题分析:(1)根据等边三角形的性质根据SAS即可证明△ABE≌△CAD;
    (2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.
    试题解析:(1)∵△ABC为等边三角形,
    ∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.
    在△ABE和△CAD中,
    AB=CA, ∠BAC=∠C,AE =CD,
    ∴△ABE≌△CAD(SAS),
    (2)∵△ABE≌△CAD,
    ∴∠ABE=∠CAD,
    ∵∠BAD+∠CAD=60°,
    ∴∠BAD+∠EBA=60°,
    ∵∠BFD=∠ABE+∠BAD,
    ∴∠BFD=60°.

    相关试卷

    山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析:

    这是一份山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析,共21页。试卷主要包含了|–|的倒数是,如图,能判定EB∥AC的条件是,一、单选题等内容,欢迎下载使用。

    2022年山东省临沂市临沭县重点名校中考数学模拟预测题含解析:

    这是一份2022年山东省临沂市临沭县重点名校中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式计算正确的是,下列图案是轴对称图形的是,定义等内容,欢迎下载使用。

    2022年山东省临沂市经济开发区达标名校中考四模数学试题含解析:

    这是一份2022年山东省临沂市经济开发区达标名校中考四模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中真命题是,下列计算正确的是.等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map