开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    第16讲 平面向量-2022年新高考艺术生40天突破数学90分练习题

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第16讲 平面向量(原卷版).docx
    • 第16讲 平面向量(解析版).docx
    第16讲 平面向量(原卷版)第1页
    第16讲 平面向量(原卷版)第2页
    第16讲 平面向量(解析版)第1页
    第16讲 平面向量(解析版)第2页
    第16讲 平面向量(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第16讲 平面向量-2022年新高考艺术生40天突破数学90分练习题

    展开

    这是一份第16讲 平面向量-2022年新高考艺术生40天突破数学90分练习题,文件包含第16讲平面向量解析版docx、第16讲平面向量原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
    16 平面向量一.选择题(共38小题) 1.(2020秋•泸州期末)已知平面向量,若反向,则等于  A B C D【解析】解:反向,故选:2.(2020秋•丹东期末)设向量不共线,向量共线,则实数  A B C1 D2【解析】解:向量不共线,向量共线,解得故选:3.(2020秋•榆林期末)已知向量不共线,,若,则  A B C D【解析】解:向量不共线,解得故选:4.(2020•鼓楼区校级模拟)已知平面向量,若向量与向量共线,则  A B C D【解析】解:平面向量又向量与向量共线,所以解得故选:5.(2020秋•沈阳期末)在中,.若点满足,则  A B C D【解析】解:在中,;如图;故选:6.(2020秋•烟台期中)若的边上一点,且,则  A B C D【解析】解:故选:7.(2020•绥化模拟)已知点的边上,,点中点,则  A B C D【解析】解:如图,根据题意,故选:8.(2021•七模拟)已知向量,则的模长是  A4 B5 C6 D7【解析】解:故选:9.(2019秋•鼓楼区校级期末)已知点,向量,若,则点的坐标为  A B C D【解析】解:设点,解得点坐标为故选:10.(2020秋•安徽期末)已知向量满足,且,则  A B2 C D【解析】解:因为所以所以故选:11.(2020秋•宣城期末)已知非零向量满足,且,则的夹角为  A B C D【解析】解:根据题意,设的夹角为,则,则变形可得:又由,则故选:12.(2020秋•吉安期末)已知单位向量满足,则的夹角是  A B C D【解析】解:根据题意,设向量的夹角向量是单位向量,则则有,则又由,则故选:13.(2020秋•运城期末)在平行四边形中,,若,则  A4 B C D【解析】解:如图,,且故选:14.(2020秋•永昌县校级期末)已知,向量,且,则  A B2 C2 D1【解析】解:根据题意,向量,则,即解可得2故选:15.(2020秋•上饶期末)已知向量的夹角为,则  A B3 C D12【解析】解:向量的夹角为故选:16.(2020秋•商洛期末)已知向量满足,且,则向量的夹角是  A B C D【解析】解:由题意可得由于向量的夹角的范围为则向量的夹角是故选:17.(2020秋•怀仁市期末)平面向量,则向量夹角的余弦值为  A B C D【解析】解:面向量所以,所以故选:18.(2020秋•抚顺期末)已知向量,且的夹角为,若,则  A2 B1 C D【解析】解:由题意可得因为的夹角为所以因为所以所以解得故选:19.(2020秋•朝阳区期末)已知向量,且,则  A B C D8【解析】解:根据题意,向量,则,则,则故选:20.(2020春•沙坪坝区校级月考)向量,向量.若,则实数  A3 B C2 D【解析】解:根据题意,向量,向量,则,则,解可得:故选:21.(2020秋•工农区校级期中)已知平面向量,且,则  A1 B2 C D4【解析】解:,可得解得故选:22.(2020秋•历城区校级期中)设向量满足,则  A2 B C D【解析】解:因为向量满足所以可得所以故选:23.(2020秋•朝阳区校级期中)已知平面向量的夹角为,若,则  A1 B C2 D【解析】解:,且解得故选:24.(2021•一模拟)已知向量,则向量的夹角的余弦值为  A B C D【解析】解:故选:25.(2020秋•西城区校级期末),则的夹角  A B C D【解析】解:,则设的夹角为,求得故选:26.(2020秋•隆德县期末)已知,且垂直,则的夹角为  A B C D【解析】解:设向量的夹角为垂直,解得故选:27.(2020秋•三明期末)设非零向量的夹角为.若,且,则等于  A B C D【解析】解:非零向量的夹角为,若,且故选:28.(2020秋•安徽期中)已知向量满足:,且,则的模等于  A B2 C D3【解析】解:向量满足:,且可得所以所以故选:29.(2020秋•佛山期末)平行四边形中,点的中点,点的一个三等分点(靠近,则  A B C D【解析】解:因为为平行四边形,所以故选:30.(2020秋•运城期中)如图,中,的中点,点满足,则  A B C D【解析】解:故选:31.(2020秋•七星区校级月考)在正方形中,的中点,若,则的值为  A B C D1【解析】解:如图所示:所以所以故选:32.(2020春•杜集区校级月考)在平行四边形中,已知,若,则  A3 B2 C D【解析】解:,解得故选:33.(2020秋•连云港月考)平行四边形中,的中点,点满足,若,则的值是  A4 B2 C D【解析】解:根据题意可得,因为所以由平面向量基本定理可得解得所以故选:34.(2020秋•山西期末)设向量,若,则实数的值为  A B0 C1 D2【解析】解:向量解得故选:35.(2021•全国模拟)已知单位向量满足,若向量,则  A B C D【解析】解:所以所以故选:36.(2020秋•锦州期末)在平行四边形中,点满足,且是边中点,若于点.且,则  A B C D【解析】解:解法一,所以所以如图所示,解法二,平行四边形中,是边中点,所以所以故选:37.(2020秋•秦安县校级期末)如图,设内一点,且,则的面积与的面积之比等于  A B C D【解析】解:四边形为平行四边形,的面积与的面积之比为:故选:38.(2021•五模拟)已知矩形中,上的点,且的中点,则  A B C D【解析】解:以点为坐标原点,所在直线为轴,所在直线为轴,距离如图所示的直角坐标系,则故选:二.填空题(共12小题)39.(2021•一模拟)已知,若平行,则  【解析】解:平行,,解得故答案为:40.(2020秋•沙依巴克区校级期末)已知向量,若,则实数的值为 2 【解析】解:向量,则整理得解得的值为2故答案为:241.(2021•十八模拟)已知向量,若,则  【解析】解:因为开设,由可得所以,解得所以,故故答案为:42.(2020秋•贵阳期末)设非零向量满足,则的夹角为  【解析】解:根据题意,设向量的夹角为又由,则又由,则变形可得:又由,则故答案为:43.(2020秋•秦安县校级期末)已知向量的夹角为,且,若,且,则实数的值是  【解析】解:向量的夹角为,且,且,则则实数故答案为:44.(2019秋•闽侯县校级期末)已知非零向量满足方向上的投影为1,则 36 【解析】解:设的夹角为,则方向上的投影为,解得:故答案为:3645.已知向量,且,则向量在向量方向上的投影为  【解析】解:,且,解得,且方向上的投影为:故答案为:46.(2019秋•鼓楼区校级期末)已知向量,则向量方向上的投影为  【解析】解:方向上的投影为:故答案为:47.(2019•赤峰模拟)设向量的模分别为12,它们的夹角为,则向量的夹角为  【解析】解:的夹角为故答案为:48.(2020秋•安徽月考)在中,,若,则的值为 1 【解析】解:因为,所以所以,又所以,所以所以故答案为:149.(2020春•潞州区校级月考)已知是平面上不共线的三点,是三角形的重心,点满足,则  【解析】解:如图所示,设的中点是是三角形的重心,边的中线上,且是中线上靠近点的三等分点,故答案为:50.(2020春•九龙坡区校级月考)若,则    【解析】解:三点共线,,故故答案为:  

    相关试卷

    第18讲 平面向量-2023年新高考艺术生突破数学90分讲义:

    这是一份第18讲 平面向量-2023年新高考艺术生突破数学90分讲义,文件包含第18讲平面向量解析版docx、第18讲平面向量原卷版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。

    第16讲 数列通项-2023年新高考艺术生突破数学90分讲义:

    这是一份第16讲 数列通项-2023年新高考艺术生突破数学90分讲义,文件包含第16讲数列通项解析版docx、第16讲数列通项原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    第1讲 集合-2022年新高考艺术生40天突破数学90分练习题:

    这是一份第1讲 集合-2022年新高考艺术生40天突破数学90分练习题,文件包含第1讲集合解析版docx、第1讲集合原卷版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map