


冀教版八年级下册第二十章 函数综合与测试课后练习题
展开
这是一份冀教版八年级下册第二十章 函数综合与测试课后练习题,共18页。试卷主要包含了函数中,自变量x的取值范围是,在函数中,自变量x的取值范围是等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图像中表示是的函数的有几个( )A.1个 B.2个 C.3个 D.4个2、函数的自变量x的取值范围是( )A.x>5 B.x<5 C.x≠5 D.x≥-53、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道处匀速跑往处,乙同学从处匀速跑往处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为(秒),甲、乙两人之间的距离为(米),与之间的函数关系如图所示,则图中的值是( )A. B.18 C. D.204、函数中,自变量x的取值范围是( )A. B.且 C. D.且5、油箱中存油60升,油从油箱中均匀流出,流速为0.3升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )A.Q=0.3t B.t=60-0.3Q C.t=0.3Q D.Q=60-0.3t6、下列函数中,自变量的取值范围选取错误的是( )A.y=2x2中,x取全体实数 B.y=中,x取x≠-1的实数C.y=中,x取x≥2的实数 D.y=中,x取x≥-3的实数7、在函数中,自变量x的取值范围是( )A. B. C. D.8、函数y=中的自变量x的取值范围是( )A.x>0 B.x≥﹣1 C.x>0且x≠﹣1 D.x≥﹣1且x≠09、下列各图中,不能表示y是x的函数的是( )A. B.C. D.10、已知一个等腰三角形的腰长为x,底边长为y,周长是10,则底边y关于腰长x之间的函数关系式及定义域为( )A.y=10﹣2x(5<x<10) B.y=10﹣2x(2.5<x<5)C.y=10﹣2x(0<x<5) D.y=10﹣2x(0<x<10)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义:用_______来表示函数关系的方法叫做列表法.列表法一目了然,使用起来比较方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律.2、一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是__________,y是x的__________.如果当x=a时,y=b,那么b叫做当自变量的值为a时的__________.3、已知y=2x2﹣3x+1,当x=1时,函数值为____.4、在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是________,y是x的________.5、已知函数,当时,_______;当时,_______.三、解答题(5小题,每小题10分,共计50分)1、小明在劳动技术课中要制作一个周长为80的等腰三角形.请你写出底边长()与腰长()的函数关系式,并求自变量的取值范围.2、周六王华骑电动车从家出发去张明家,当他骑了一段路时,想起要帮张明买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往张明家,如图是他离家的路程与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)王华家到张明家的路程是多少米?(2)王华在新华书店停留了多长时间?(3)买到书后,王华从新华书店到张明家骑车的平均速度是多少?(4)本次去张明家途中,王华一共行驶了多少米?3、在某火车站托运物品时,不超过的物品需付2元,以后每增加(不足按计)需增加托运费0.5元,设托运(p为整数)物品的费用为c元,试写出c的计算公式.4、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6立方米时,水费按a元/立方米收费;每户每月用水量超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分按c元/立方米收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量x(m3)收费y(元)357.54927(1)求a、c的值;(2)写出每月用水量x不超过6立方米和超过6立方米时,水费y与用水量x之间的关系式;(3)已知某户5月份的用水量为8立方米,求该用户5月份的水费.5、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离与行驶时间之间的关系如下图所示.(1)______,______.(2)请你求出甲车离出发地郑州的距离与行驶时间之间的函数关系式.(3)求出点的坐标,并说明此点的实际意义.(4)直接写出甲车出发多长时间两车相距40千米. -参考答案-一、单选题1、A【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.【详解】解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,故第2个图符合题意,其它均不符合,故选:A.【点睛】本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.2、D【解析】【分析】根据二次根式有意义的条件即可得出答案.【详解】解:∵函数,∴,解得:,故选:D.【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.3、A【解析】【分析】根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.【详解】解:由图象可得,甲的速度为100÷25=4(米/秒),乙的速度为:100÷10-4=10-4=6(米/秒),则t=,故选:A.【点睛】本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.4、B【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x-2≥0且x−3≠0,解得且.故选:B.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5、D【解析】【分析】根据油箱中剩余油量=总存油量-流出的油量,列出函数关系式即可.【详解】解:根据题意:油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是:,故选:D.【点睛】本题考查了列函数解析式,关键是正确理解题意,找出题目中的等量关系.6、D【解析】【分析】根据分式的分母不能为0、二次根式的被开方数的非负性即可得.【详解】解:A、中,取全体实数,此项正确;B、,即,中,取的实数,此项正确;C、,,中,取的实数,此项正确;D、,且,,中,取的实数,此项错误;故选:D.【点睛】本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.7、C【解析】【分析】根据二次根式和分式有意义的条件列出不等式即可求解.【详解】解:根据题意可列不等式组为,解得,,故选:C.【点睛】本题考查了二次根式和分式有意义的条件,解题关键是明确二次根式被开方数大于或等于0,分母不得0.8、D【解析】【分析】根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.【详解】解:由题意得:x+1≥0且x≠0,解得:x≥-1且x≠0,故选:D.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.9、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.10、B【解析】【分析】根据等腰三角形的定义即三角形的周长公式列出底边y关于腰长x之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.【详解】一个等腰三角形的腰长为x,底边长为y,周长是10,即即解得即解得底边y关于腰长x之间的函数关系式为故选B【点睛】本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.二、填空题1、表格【解析】略2、 自变量 函数 函数值【解析】略3、0【解析】【分析】根据函数值的求法,直接将x=1代入函数关系式得出即可.【详解】解:y=2x2-3x+1,当x=1时,y=2×12-3×1+1=0.故答案为:0.【点睛】此题主要考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题关键.4、 自变量 函数【解析】略5、 3 【解析】【分析】分别将和代入解析式,即可求解.【详解】解:当时,;当时, ,解得: .故答案为:3; .【点睛】本题主要考查了求函数的自变量和函数值,解题的关键是理解并掌握当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.三、解答题1、【解析】【分析】由等腰三角形的周长=腰长×2+底长,可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).【详解】解:由题意得,=80,所以,y=80-2x,由于三角形两边之和大于第三边,且边长大于0,所以,解得,所以.【点睛】本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.2、(1)4800米;(2)8分钟;(3)450米/分;(4)6800米【解析】【分析】(1)根据函数图象,直接可得王华家到张明家的路程;(2)根据函数图像平行于横轴的部分即为停留的时间,据此可得王华在新华书店停留了多长时间;(3)根据函数图象求得路程和时间,概念速度等于路程除以时间即可求得;(4)根据函数图象可得路程为3段,将其相加即可.【详解】解:(1)根据函数图象,可知王华家到张明家的路程是4800米;(2)24﹣16=8(分钟).所以王华在新华书店停留了8分钟;(3)王华从新华书店到张明家的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,小王华从新华书店到张明家骑车的平均速度是:1800÷4=450(米/分);(4)根据函数图象,王华一共行驶了4800+2×(4000﹣3000)=6800(米).【点睛】本题考查了函数图象,要理解横纵坐标表示的含义以及王华的运动过程,从函数图象中获取信息是解题的关键.3、(p为正整数).【解析】【分析】由于p是整数,则可求c=0.5p+1.5.【详解】解:∵p是整数,∴c=2+0.5(p-1)=0.5p+1.5.【点睛】本题考查函数的解析式;理解题意,能够根据实际问题列出正确的函数是解题的关键.4、(1)a=1.5,c=6;(2)时,,时,;(3)该用户5月份的水费为21元.【解析】【分析】(1)根据题意列出方程组,解出即可求解;(2)分时和当时,列出函数关系式,即可求解;(3)根据 ,将 代入,即可求解.【详解】解:(1)根据题意得: ,解得: ;(2)当时,,当时,;(3)∵ ,∴该用户5月份的水费(元).【点睛】本题主要考查了二元一次方程组的应用,列函数关系式,求函数值,明确题意,准确得到等量关系是解题的关键.5、 (1)8,6.5(2)(3)点P的坐标为(5,360),点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米(4)当甲车出发2.4小时或2.8小时或小时两车相距40千米【解析】【分析】(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m;然后算出乙车从西安到郑州需要的时间即可求出n;(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;(3)根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可;(4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可.(1)解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止,∴直线的函数图像是乙车的,折线的函数图像是甲车的,由函数图像可知,甲车4小时从郑州行驶到西安走了480千米,∴甲车的速度=480÷4=120千米/小时,∴甲车从西安返回郑州需要的时间=480÷120=4小时,∴m=4+4=8;∵乙车的速度为80千米/小时,∴乙车从西安到达郑州需要的时间=480÷80=6小时,∵由函数图像可知乙车是在甲车出发0.5小时后出发,∴n=0.5+6=6.5,故答案为:8,6.5;(2)解:当甲车从郑州去西安时,∵甲车的速度为120千米/小时,∴甲车与郑州的距离,当甲车从西安返回郑州时,∵甲车的速度为120千米/小时,∴甲车与郑州的距离,∴;(3)解:根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,∵此时甲车处在返程途中,∴,解得,∴,∴点P的坐标为(5,360),∴点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;(4)解:当甲车在去西安的途中,甲乙两车相遇前,由题意得:,解得;当甲车在去西安的途中,甲乙两车相遇后,由题意得:,解得;当甲车在返回郑州的途中,乙未到郑州时,由题意得:解得(不符合题意,舍去),当甲车在返回郑州的途中,乙已经到郑州时,由题意得:解得;综上所述,当甲车出发2.4小时或2.8小时或小时两车相距40千米.【点睛】本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试课堂检测,共22页。试卷主要包含了在函数中,自变量的取值范围是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试课时作业,共21页。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题,共24页。试卷主要包含了函数y=的自变量x的取值范围是等内容,欢迎下载使用。
