


冀教版八年级下册第二十一章 一次函数综合与测试练习题
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试练习题,共25页。试卷主要包含了已知正比例函数的图像经过点,若直线y=kx+b经过一,已知一次函数y=kx+b等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )A. B. C. D.2、下列各点在函数y=﹣3x+2图象上的是( )A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)3、直线不经过点( )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)4、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么与的大小关系是( )A. B. C. D.无法确定5、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )A.(2,2) B.(,) C.(,) D.(,)6、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )A. B.C. D.7、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )A. B. C. D.8、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是( )A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣19、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )A.-3 B.-1 C.2 D.410、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、写出一个过点的一次函数解析式__.2、若点是直线上一点,则m=______.3、如图,一次函数y=2x和y=ax+5的图象交于点A(m,3),则不等式ax+5<2x的解集是 _____.4、若一次函数y=2x+b的图象经过A(-1,1)则b=____,该函数图象经过点B(1,__)和点C(___,0).5、已知 M(1, a )和 N(2, b )是一次函数 y=-x+1 图像上的两点,则 a______b (填“>”、“<”或“=”).三、解答题(5小题,每小题10分,共计50分)1、如图,直线l经过点A(﹣1,﹣2)和B(0,1).(1)求直线l的函数表达式;(2)线段AB的长为_____;(3)在y轴上存在点C,使得以A、B、C为顶点的三角形是以AB为腰的等腰三角形,请直接写出点C的坐标.2、肥西县祥源花世界管理委员会要添置办公桌椅A,B两种型号,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)直接写出A型桌椅每套 元,B型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A型桌椅不少于12套,B型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A型桌椅x套,总费用为y元.①求y与x之间的函数关系,并直接写出x的取值范围;②求出总费用最少的购置方案.3、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送168箱小鸡到A,B两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车8090小货车4060(1)试求这18辆车中大、小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式,并直接写出自变量取值范围;(3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.4、已知一次函数y1=ax+b,y2=bx+a(ab≠0,且a≠b).(1)若y1过点(1,2)与点(2,b﹣a﹣3)求y1的函数表达式;(2)y1与y2的图象交于点A(m,n),用含a,b的代数式表示n;(3)设y3=y1﹣y2,y4=y2﹣y1,当y3>y4时,求x的取值范围.5、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).(1)求这个一次函数的解析式;(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积. -参考答案-一、单选题1、B【解析】【分析】过作轴,可证得,从而得到,,可得到再由,,即可求解.【详解】解:过作轴,则,对于直线,令,得到,即,,令,得到,即,,,为等腰直角三角形,即,,,,在和中, ,,,,即,,设直线的解析式为,, ,解得 .过、两点的直线对应的函数表达式是.故选:B【点睛】本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.2、B【解析】【分析】根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.【详解】∵,∴A不符合题意,∵,∴B符合题意,∵,∴C不符合题意,∵,∴D不符合题意,故选B.【点睛】本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.3、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.4、A【解析】【分析】先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1与y2的大小.【详解】解:∵正比例函数的图像经过点(2,4)、代入解析式得解得∴正比例函数为∵<0,∴y随x的增大而减小,由于-1<1,故y1<y2.故选:A.【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数的图象,当k<0时,y随x的增大而减小是解题关键.5、C【解析】【分析】先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.【详解】∵∠OBA=90°,A(4,4),且,点D为OB的中点,∴点D(2,0),AC=1,BC=3,点C(4,3),设直线AO的解析式为y=kx,∴4=4k,解得k=1,∴直线AO的解析式为y=x,过点D作DE⊥AO,交y轴于点E,交AO于点F,∵∠OBA=90°,A(4,4),∴∠AOE=∠AOB=45°,∴∠OED=∠ODE=45°,OE=OD,∴DF=FE,∴点E是点D关于直线AO的对称点,∴点E(0,2),连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,设CE的解析式为y=mx+n,∴,解得,∴直线CE的解析式为y=x+2,∴,解得,∴使四边形PDBC周长最小的点P的坐标为(,),故选C.【点睛】本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.6、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;故选B.【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.7、B【解析】【分析】根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.【详解】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴直线y=bx﹣k过一、二、三象限,∴选项B中图象符合题意.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.8、D【解析】【分析】根据题意和一次函数的性质,可以解答本题.【详解】解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,∴b=-1,k>0,故选:D.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.9、B【解析】【分析】先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.【详解】解:根据题意,∵y1>y2,∴,解得:,∴,∴;,∵当x<1时,y1>y2,∴∴,∴;∴k的值可以是-1;故选:B.【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.10、A【解析】【分析】作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.【详解】解:如图,作点A关于x轴的对称点,则PA=,∴≤(当P、、B共线时取等号),连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),设直线的函数表达式为y=kx+b,将(1,-1)、B(2,-3)代入,得:,解得:,∴y=-2x+1,当y=0时,由0=-2x+1得:x=,∴点P坐标为(,0),故选:A【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.二、填空题1、(答案不唯一)【解析】【分析】设该一次函数的解析式为,取(或其他值都可以),将点代入求解即可得.【详解】解:设该一次函数的解析式为,取,点在一次函数图象上,.一次函数的解析式为,故答案为:(答案不唯一).【点睛】题目主要考查一次函数解析式的确定,理解题意,熟练掌握待定系数法确定函数解析式是解题关键.2、10【解析】【分析】把点代入解析式,即可求解.【详解】解:∵点是直线上一点,∴ .故答案为:10【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.3、##【解析】【分析】把点A(m,3)代入y=2x求解的值,再利用的图象在的图象的上方可得答案.【详解】解: 一次函数y=2x和y=ax+5的图象交于点A(m,3), 不等式ax+5<2x的解集是 故答案为:【点睛】本题考查的是根据一次函数的交点坐标确定不等式的解集,理解一次函数的图象的性质是解本题的关键.4、 3 5 【解析】略5、>【解析】【分析】由M(1,a)和N(2,b)是一次函数y=-x+1图象上的两点,利用一次函数图象上点的坐标特征可求出a,b的值,比较后即可得出结论.【详解】解:当x=1时,a=-1+1=0;当x=2时,b=-2+1=-1.∵0>-1,∴a>b.故答案为:>.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.三、解答题1、 (1)y=3x+1(2)(3)C的坐标为(0,﹣5)或(0,﹣+1)或(0,+1).【解析】【分析】(1)根据题意设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入即可得直线l的函数表达式为y=3x+1;(2)根据题意由A(﹣1,﹣2),B(0,1),可得AB=;(3)由题意设C(0,m),则AC=,BC=|m﹣1|,①若AB=AC,即=,可解得C(0,﹣5);②若AB=BC,得=|m﹣1|,解得C(0,﹣+1)或(0,+1).【详解】解:(1)设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入得:,解得,∴直线l的函数表达式为y=3x+1;(2)∵A(﹣1,﹣2),B(0,1),∴AB==;故答案为:.(3)设C(0,m),则AC=,BC=|m﹣1|,①若AB=AC,如图:∴=,解得m=1(与B重合,舍去)或m=﹣5,∴C(0,﹣5);②若AB=BC,如图:∴=|m﹣1|,解得m=﹣+1或m=+1,∴C(0,﹣+1)或(0,+1),综上所述,以A、B、C为顶点的三角形是以AB为腰的等腰三角形,则C的坐标为(0,﹣5)或(0,﹣+1)或(0,+1).【点睛】本题考查一次函数及应用,涉及待定系数法、两点间的距离、等腰三角形等知识,解题的关键是根据题意,列出满足条件的方程.2、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:,解得:,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A型桌椅不少于12套,B型桌椅不少于6套,∴,解得:12≤x≤14,所以y与x之间的函数关系为y=-200x+16200(12≤x≤14,x为整数);②由①知y=-200x+16200,且-200<0,∴y随x的增大而减小,∴当x=14时,总费用y最少,最少费用为-200×14+16200=13400元,即购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.3、 (1)大货车用12辆,小货车用6辆(2)(4≤x≤12,且x为整数)(3)8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元【解析】【分析】(1)设大货车用a辆,小货车用b辆,根据大、小两种货车共18辆,运输168箱小鸡,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.(1)设大货车用a辆,小货车用b辆,根据题意得:解得:.∴大货车用12辆,小货车用6辆.(2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,y=80x+90(12-x)+40(10-x)+60[6-(10-x)]=10x+1240.4≤x≤12,且x为整数.(4≤x≤12,且x为整数)(3)由题意得:10x+8(10-x)≥96,解得:x≥8,又∵4≤x≤12,∴8≤x≤12且为整数,∵y=10x+1240,k=10>0,y随x的增大而增大,∴当x=8时,y最小,最小值为y=10×8+1240=1320(元).答:使总运费最少的调配方案是:8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,理解题意列出方程组、关系式、不等式是解题的关键.4、 (1)y1=﹣x+3(2)n=a+b(3)当a>b时,x>1;当a<b时,x<1【解析】【分析】(1)把(1,2)、(2,b-a-3)分别代入y1=ax+b得到a、b的方程组,然后解方程组得到y1的函数表达式;(2)把A(m,n)分别代入y1=ax+b和y2=bx+a中得到,先利用加减消元法求出m,然后得到n与a、b的关系式;(3)先用a、b表示y3和y4,利用y3>y4得到(a-b)x+b-a>(b-a)x+a-b,然后解不等式即可.(1)解:把(1,2)、(2,b﹣a﹣3)分别代入y1=ax+b得,解得,∴y1的函数表达式为y1=﹣x+3;(2)解:∵y1与y2的图象交于点A(m,n),∴,∴m=1,n=a+b;(3)解:y3=y1﹣y2=ax+b﹣(bx+a)=(a﹣b)x+b﹣a,y4=y2﹣y1=bx+a﹣(ax+b)=(b﹣a)x+a﹣b,∵y3>y4,∴(a﹣b)x+b﹣a>(b﹣a)x+a﹣b,整理得(a﹣b)x>a﹣b,当a>b时,x>1;当a<b时,x<1.【点睛】本题考查了待定系数法求一次函数解析式:设一次函数解析式为y=kx+b(k≠0),再把两组对应量代入,然后解关于k,b的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.5、 (1)y=2x+3(2)S△BOC=【解析】【分析】(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;(2)利用直线解析式求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.(1)解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).∴,解得:,∴这个一次函数的解析式为:y=2x+3.(2)解:令y=0,则2x+3=0,解得x=﹣,∴C(﹣,0),∵B(0,3).∴S△BOC==.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.
相关试卷
这是一份冀教版八年级下册第二十章 函数综合与测试课后复习题,共24页。试卷主要包含了如图所示的图象,如图,点A的坐标为等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共30页。试卷主要包含了点A,若点等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课时练习,共29页。试卷主要包含了如图,一次函数y=kx+b,当时,直线与直线的交点在等内容,欢迎下载使用。
