开学活动
搜索
    上传资料 赚现金

    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练试卷(含答案详解)

    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练试卷(含答案详解)第1页
    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练试卷(含答案详解)第2页
    2021-2022学年最新冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练试卷(含答案详解)第3页
    还剩32页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习

    展开

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习,共35页。
    九年级数学下册第二十九章直线与圆的位置关系同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是( )
    A.0 B.1 C.2 D.无法确定
    2、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )

    A. B. C. D.
    3、已知⊙O的半径为4,,则点A在( )
    A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
    4、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m(  )
    A.m=4 B.m=4 C.4≤m≤4 D.4≤m≤4
    5、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是(  )
    A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内
    C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外
    6、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )

    A.54° B.36° C.32° D.27°
    7、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )
    A.4 B.3 C.2 D.1
    8、如图,AB是⊙O的直径,点M在BA的延长线上,MA=AO,MD与⊙O相切于点D,BC⊥AB交MD的延长线于点C,若⊙O的半径为2,则BC的长是(  )

    A.4 B. C. D.3
    9、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为(  )
    A.6,3 B.6,3 C.3,6 D.6,3
    10、圆O的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为(  )
    A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,正方形ABCD内接于⊙O,点P在上,则∠BPC的度数为_____.

    2、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
    3、已知正六边形的周长是24,则这个正六边形的半径为_____ .
    4、如图,已知正方形ABCD的边长为4,点E在BC上,DE为以AB为直径的半圆的切线,切点为F,连结CF,则ED的长为______,CF的长为______.

    5、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______.


    三、解答题(5小题,每小题10分,共计50分)
    1、如图,点在轴正半轴上,,点是第一象限内的一点,以为直径的圆交轴于,两点,,两点的横坐标是方程的两个根,,连接.

    (1)如图(1),连接.
    ①求的正切值;
    ②求点的坐标.
    (2)如图(2),若点是的中点,作于点,连接,,,求证:.
    2、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).

    (1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
    ①设A、B、P三点所在圆的圆心为C,则点C的坐标是    ,⊙C的半径是    ;
    ②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
    (2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为    .
    3、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.

    (1)求证:;
    (2)求证:AF是⊙O的切线.
    4、如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,.

    (1)求证:PC是⊙O的切线;
    (2)求证:;
    (3)若,△ACD的面积为12,求PB的长.
    5、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.
    【详解】
    解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,
    ∴,
    ∴直线l与相离,
    ∴直线l与⊙O的公共点的个数为0,
    故选A.
    【点睛】
    本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.
    2、B
    【解析】
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,

    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    3、C
    【解析】
    【分析】
    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
    【详解】
    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
    ∴d>r,
    ∴点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
    4、D
    【解析】
    【分析】
    根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题
    【详解】
    解:如图,

    根据题意,折叠后的弧为,为切点,设点为所在的圆心,的半径相等,即,连接,设交于点,
    根据折叠的性质可得,又则四边形是菱形,且

    设,则
    则当取得最大值时,取得最小值,即取得最小值,
    当取得最小值时,取得最大值,
    根据题意,当点于点重合时,四边形是正方形


    此时
    当点与点重合时,此时最小,





    故选D
    【点睛】
    本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键.
    5、A
    【解析】
    【分析】
    根据数轴以及圆的半径可得当d=r时,⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可
    【详解】
    解:∵圆心A在数轴上的坐标为3,圆的半径为2,
    ∴当d=r时,⊙A与数轴交于两点:1、5,
    故当a=1、5时点B在⊙A上;
    当d<r即当1<a<5时,点B在⊙A内;
    当d>r即当a<1或a>5时,点B在⊙A外.
    由以上结论可知选项B、C、D正确,选项A错误.
    故选A.
    【点睛】
    本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.
    6、D
    【解析】
    【分析】
    由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.
    【详解】
    解:∵AB为⊙O的切线,
    ∴∠OAB=90°,
    ∵∠ABO=36°,
    ∴∠AOB=90°﹣∠ABO=54°,
    ∵OA=OD,
    ∴∠ADC=∠OAD,
    ∵∠AOB=∠ADC+∠OAD,
    ∴∠ADC=∠AOB=27°;
    故选:D.
    【点睛】
    本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.
    7、A
    【解析】
    【分析】
    根据点与圆的位置关系得出OP>3即可.
    【详解】
    解:∵⊙O的半径为3,点P在⊙O外,
    ∴OP>3,
    故选:A.
    【点睛】
    本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
    8、B
    【解析】
    【分析】
    连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODM=90°,根据勾股定理求出MD,再根据勾股定理求出BC即可.
    【详解】
    解:连接OD,

    ∵MD切⊙O于D,
    ∴∠ODM=90°,
    ∵⊙O的半径为2,MA=AO,AB是⊙O的直径,
    ∴MO=2+2=4,MB=4+2=6,OD=2,
    由勾股定理得:MD===2,
    ∵BC⊥AB,
    ∴BC切⊙O于B,
    ∵DC切⊙O于D,
    ∴CD=BC,
    设CD=CB=x,
    在Rt△MBC中,由勾股定理得:MC2=MB2+BC2,
    即(2+x)2=62+x2,
    解得:x=2,
    即BC=2,
    故选:B.
    【点睛】
    本题考查了切线的性质和判定,圆周角定理,勾股定理等知识点,能综合运用定理进行推理是解此题的关键.
    9、B
    【解析】
    【分析】
    如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
    【详解】
    解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=360°÷6=60°,
    ∵OA=OB,
    ∴△OAB是等边三角形,
    ∴OA=AB=6;

    (2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,

    ∵六边形ABCDEF是正六边形,
    ∴∠AO1B=60°,
    ∵O1A= O1B,
    ∴△O1AB是等边三角形,
    ∴O1A= AB=6,
    ∵O1M⊥AB,
    ∴∠O1MA=90°,AM=BM,
    ∵AB=6,
    ∴AM=BM,
    ∴O1M.
    故选B.
    【点睛】
    本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
    10、B
    【解析】
    【分析】
    根据点与圆的位置关系的判定方法进行判断.
    【详解】
    解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,
    即点A到圆心O的距离小于圆的半径,
    ∴点A在⊙O内.
    故选:B.
    【点睛】
    本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
    二、填空题
    1、45°##45度
    【解析】
    【分析】
    连接OB、OC,根据正方形的性质得到∠BOC的度数,利用圆周角与圆心角的关系得到答案.
    【详解】
    解:连接OB、OC,

    ∵四边形ABCD是正方形,
    ∴∠BOC=90°,
    ∴∠BPC=,
    故答案为:45°.
    【点睛】
    此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半,熟记各知识点是解题的关键.
    2、5或3##3或5
    【解析】
    【分析】
    分点P在圆内或圆外进行讨论.
    【详解】
    解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;
    ②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;
    综上所述:⊙O的半径长为 5cm或3cm.
    故答案为:5或3.
    【点睛】
    本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
    3、4
    【解析】
    【分析】
    由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.
    【详解】
    解:∵正六边形可以由其半径分为六个全等的正三角形,
    而三角形的边长就是正六边形的半径,
    又∵正六边形的周长为24,
    ∴正六边形边长为24÷6=4,
    ∴正六边形的半径等于4.
    故答案为4.
    【点睛】
    此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.
    4、 5
    【解析】
    【分析】
    先证明BE、AD也是半圆的切线,即可根据切线长定理得到EB=EF、DA=DF,再在△DCE中即可求出DE的值;过F作FG⊥DC于G,根据相似求出FG、CG的长,最后根据勾股定理即可求出CF的值.
    【详解】
    ∵正方形ABCD
    ∴CD=AD=BC=4,CE⊥AB,DA⊥AB
    ∵以AB为直径的半圆
    ∴BE、AD也是半圆的切线
    ∵DE为以AB为直径的半圆的切线,
    ∴EB=EF、DA=DF=4
    ∴EC=BC-BE=4-EF,DE=DF+EF=4+EF
    在Rt△DCE中,

    解得
    ∴DE=DF+EF=4+EF=5
    过F作FG⊥DC于G,如图




    解得

    ∴在Rt△DCE中,
    故答案为:5,
    【点睛】
    本题考查切割线定理、相似三角形的性质与判定,解题的关键是能看出有多条切线.
    5、6
    【解析】
    【分析】
    如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.
    【详解】
    解:如图,连接OA、OB、OC、OD、OE、OF.
    ∵正六边形ABCDEF,
    ∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,
    ∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,
    ∵的周长为,
    ∴的半径为,
    正六边形的边长是6;

    【点睛】
    本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.
    三、解答题
    1、 (1)①,②(4,3)
    (2)见解析
    【解析】
    【分析】
    (1)①过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理得到∠ADB=90°,根据正切的定义计算即可;②过点B作BE⊥x轴于点E,作AG⊥BE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;
    (2)过点E作EH⊥x轴于H,证明△EHD≌△EFB,得到EH=EF,DH=BF,再证明Rt△EHC≌Rt△EFC,得到CH=CF,结合图形计算,证明结论.
    (1)
    解:①以AB为直径的圆的圆心为P,
    过点P作PH⊥DC于H,作AF⊥PH于F,连接PD、AD,
    则DH=HC=DC,四边形AOHF为矩形,
    ∴AF=OH,FH=OA=1,
    解方程x2﹣4x+3=0,得x1=1,x2=3,
    ∵OC>OD,
    ∴OD=1,OC=3,
    ∴DC=2,
    ∴DH=1,
    ∴AF=OH=2,
    设圆的半径为r,则PH2=,
    ∴PF=PH﹣FH,
    在Rt△APF中,AP2=AF2+PF2,即r2=22+(PH﹣1)2,
    解得:r=,PH=2,PF=PH﹣FH=1,
    ∵∠AOD=90°,OA=OD=1,
    ∴AD=,
    ∵AB为直径,
    ∴∠ADB=90°,
    ∴BD===3,
    ∴tan∠ABD===;
    ②过点B作BE⊥x轴于点E,交圆于点G,连接AG,
    ∴∠BEO=90°,
    ∵AB为直径,
    ∴∠AGB=90°,
    ∵∠AOE=90°,
    ∴四边形AOEG是矩形,
    ∴OE=AG,OA=EG=1,
    ∵AF=2,
    ∵PH⊥DC,
    ∴PH⊥AG,
    ∴AF=FG=2,
    ∴AG=OE=4,BG=2PF=2,
    ∴BE=3,
    ∴点B的坐标为(4,3);

    (2)
    证明:过点E作EH⊥x轴于H,
    ∵点E是的中点,
    ∴=,
    ∴ED=EB,
    ∵四边形EDCB为圆P的内接四边形,
    ∴∠EDH=∠EBF,
    在△EHD和△EFB中,

    ∴△EHD≌△EFB(AAS),
    ∴EH=EF,DH=BF,
    在Rt△EHC和Rt△EFC中,

    ∴Rt△EHC≌Rt△EFC(HL),
    ∴CH=CF,
    ∴2CF=CH+CF=CD+DH+BC﹣BF=BC+CD.

    【点睛】
    本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键.
    2、 (1)①(4,3)或C(4,−3),,②,
    (2)
    【解析】
    【分析】
    (1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
    (2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
    (1)
    ①如图1中,

    在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
    圆心C的坐标为(4,3),半径为3,
    根据对称性可知点C(4,−3)也满足条件,
    故答案是:(4,3)或C(4,−3),,
    ②y轴的正半轴上存在线段AB的“等角点”。
    如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,

    ∵⊙C的半径,
    ∴⊙C与y轴相交,
    设交点为,,此时,在y轴的正半轴上,
    连接、、CA,则==CA =r=3,
    ∵CD⊥y轴,CD=4,,
    ∴,
    ∴,;
    当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
    故答案为:,
    (2)
    当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
    如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
    如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
    连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,

    ∵点P,点N在⊙E上,
    ∴∠APB=∠ANB,
    ∵∠ANB是△MAN的外角,
    ∴∠ANB>∠AMB,
    即∠APB>∠AMB,
    此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
    ∵⊙E与y轴相切于点P,则EP⊥y轴,
    ∴四边形OPEF是矩形,OP=EF,PE=OF=4,
    ∴⊙E的半径为4,即EA=4,
    ∴在Rt△AEF中,,
    ∴,
    即 .
    故答案为:
    【点睛】
    本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
    3、 (1)见解析;
    (2)见解析
    【解析】
    【分析】
    (1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
    (2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
    (1)
    解:∵,
    ∴,
    又∵,
    ∴,
    ∴ ;
    (2)
    解:如图,连接OA,

    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵已知,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴AF为⊙O的切线.
    【点睛】
    本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
    4、 (1)见解析
    (2)见解析
    (3)
    【解析】
    【分析】
    (1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;
    (2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;
    (3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.
    (1)
    连接OC,如图,

    ∵AB是的直径,

    即.
    ,,


    .

    .

    又是半径,
    是⊙O的切线.
    (2)
    由(1),得.

    .


    平分,
    .
    又,
    ,即.

    .
    (3)
    作于点F,如图,


    平分,,

    ,由勾股定理得:.
    ,,

    .

    .
    设,

    .
    解得或(舍去).

    Rt△ACF中,由勾股定理得:,
    ,.
    由(2)得,
    .
    ,,



    【点睛】
    本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.
    5、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练,共28页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后作业题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后作业题,共34页。

    初中数学第29章 直线与圆的位置关系综合与测试精品课后练习题:

    这是一份初中数学第29章 直线与圆的位置关系综合与测试精品课后练习题,共33页。试卷主要包含了如图,A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map