开学活动
搜索
    上传资料 赚现金

    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数同步练习试卷(无超纲)

    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数同步练习试卷(无超纲)第1页
    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数同步练习试卷(无超纲)第2页
    2021-2022学年度强化训练冀教版九年级数学下册第三十章二次函数同步练习试卷(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀练习题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀练习题,共33页。试卷主要包含了已知点,,都在函数的图象上,则,二次函数y=ax2+bx+c等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数同步练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是(  )
    A.4 B.2 C.6 D.3
    2、抛物线的顶点为( )
    A. B. C. D.
    3、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )

    A.1个 B.2个 C.3个 D.4个
    4、已知点,,都在函数的图象上,则( )
    A. B. C. D.
    5、若函数,则当函数y=15时,自变量的值是( )
    A. B.5 C.或5 D.5或
    6、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有(  )
    A.1个 B.2个 C.3个 D.4个
    7、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有(  )

    A.1个 B.2个 C.3个 D.4个
    8、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为(  )

    A.2 B.3 C.3 D.D3
    9、已知二次函数,则关于该函数的下列说法正确的是( )
    A.该函数图象与轴的交点坐标是
    B.当时,的值随值的增大而减小
    C.当取1和3时,所得到的的值相同
    D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
    10、二次函数的最大值是( )
    A. B. C.1 D.2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、二次函数的图像如图所示,对称轴为直线,根据图中信息可求得该二次函数的解析式为______.

    2、已知抛物线,点在抛物线上,则的最小值是______.
    3、如图,抛物线与直线的交点为,.当时,x的取值范围______.

    4、二次函数(m、c 是常数,且m≠0)的图像过点 A(3,0),则方程mx2+2mx+c=0的根为______.
    5、如图,函数的图象过点和,下列判断:
    ①;
    ②;
    ③;
    ④和处的函数值相等.
    其中正确的是__(只填序号).

    三、解答题(5小题,每小题10分,共计50分)
    1、已知,如图,直线分别与轴、轴交于点、,抛物线经过点和点,其对称轴与直线交于点.

    (1)求二次函数的表达式;
    (2)若抛物线(其中)与抛物线的对称轴交于点.与直线交于点,过点作轴交抛物线的对称轴左侧部分于点.
    ①若点和点重合,求的值;
    ②若点在点的下方,求、的长(用含有的代数式表示);
    ③在②的条件下,设的长度为个单位,的长度为个单位,若.直接写出的范围.
    2、已知直线y1=kx+1(k>0)与抛物线y2=x2.

    (1)当﹣4≤x≤3时,函数y1与y2的最大值相等,求k的值;
    (2)如图①,直线y1=kx+1与抛物线y2=x2交于A,B两点,与y轴交于F点,点C与点F关于原点对称,求证:S△ACF:S△BCF=AC:BC;
    (3)将抛物线y2=x2先向上平移1个单位,再沿直线y1=kx+1的方向移动,使向右平行移动的距离为t个单位,如图②所示,直线y1=kx+1分别交x轴,y轴于E,F两点,交新抛物线于M,N两点,D是新抛物线与y轴的交点,当△OEF∽△DNF时,试探究t与k的关系.
    3、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
    销售单价x(元)
    40
    60
    80
    日销售量y(件)
    80
    60
    40
    (1)求y与x的函数关系式;
    (2)求公司销售该商品获得的最大日利润.
    4、在平面直角坐标系中,抛物线交轴于点,,过点的直线交抛物线于点.
    (1)求该抛物线的函数表达式;
    (2)若点是直线下方抛物线上的一个动点(不与点,重合),求面积的最大值;
    (3)若点在抛物线上,点在直线上.试探究:是否存在点,,使得,同时成立?若存在,请直接写出点的坐标;若不存在,请说明理由.
    5、生态水果是指在保护、改善农业生态环境的前提下,遵循生态学、生态经济学规律,运用现代科学技术,营养的、健康的水果.青岛市扶贫工作小组对李沧、胶州、即墨等多地果农进行精准投资建设,帮助果农将一种有机生态水果拓宽了市场,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了.批发销售总额比去年增加了20%
    (1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
    (2)今年某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时该水果店一天的利润最大(利润计算时,其它费用忽略不计,并且售价为整数)

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.
    【详解】
    解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2
    ∴函数图象一定经过点C(2,-2)
    点C关于x轴对称的点的坐标为(2,2),连接,如图,



    故选:C
    【点睛】
    本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.
    2、B
    【解析】
    【分析】
    根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
    【详解】
    解:∵y=2(x-1)2+3,
    ∴抛物线的顶点坐标为(1,3),
    故选:B.
    【点睛】
    本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
    3、B
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
    【详解】
    解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
    由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
    由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
    因此④正确的,
    综上所述,正确的有2个,
    故选:B.
    【点睛】
    考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
    4、C
    【解析】
    【分析】
    把点的坐标分别代入函数解析式可分别求得、、,再比较其大小即可.
    【详解】
    解:点,,都在函数的图象上,
    ,,,

    故选:C.
    【点睛】
    本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.
    5、D
    【解析】
    【分析】
    根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
    【详解】
    解:当x<3时,
    令2x2-3=15,
    解得x=-3;
    当x≥3时,
    令3x=15,
    解得x=5;
    由上可得,x的值是-3或5,
    故选:D.
    【点睛】
    本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
    6、C
    【解析】
    【分析】
    利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.
    【详解】
    解: 抛物线y=mx2+4mx+m﹣2(m≠0),
    抛物线的对称轴为: 故①符合题意;


    当时,
    所以抛物线与轴有两个交点,故②不符合题意;
    当时,抛物线的开口向上,如图,

    则关于的对称点为: 而
    故③符合题意;
    当时,抛物线的开口向下,如图,

    同理可得:由
    则或 故④符合题意,
    综上:符合题意的有:①③④
    故选:C
    【点睛】
    本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.
    7、C
    【解析】
    【分析】
    根据图象可判断abc的符号,可判断结论①,由图象与x轴的交点个数可判断②,由对称轴及x=−2时的函数值即可判断③,由x=−3和对称轴即可判断④.
    【详解】
    解:∵图象开口向下,
    ∴a<0,
    ∵对称轴为直线x=1,
    ∴−=1,
    ∴b=−2a>0,
    ∵图象与y轴的交点在x轴的上方,
    ∴c>0,
    ∴abc<0,
    ∴①说法正确,
    由图象可知抛物线与x轴有两个交点,
    ∴b2−4ac>0,
    ∴②错误,
    由图象可知,当x=−2时,y<0,
    ∴4a−2b+c=4a−2(−2a)+c=8a+c<0,
    ∴③正确,
    由题意可知x=−3是ax2+bx+c−n=0(a≠0)的一个根,
    ∵对称轴是x=1,
    ∴另一个根为x=5,
    ∴④正确,
    ∴正确的有①③④,
    故选:C.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与各系数之间的关系.
    8、B
    【解析】
    【分析】
    先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.
    【详解】
    ∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),
    ∴y=a(x+2)2+2,
    ∵与y轴交于点A(0,3),
    ∴3=a(0+2)2+2,解得a=
    ∴原抛物线的解析式为:y=(x+2)2+2,
    ∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),
    ∴平移后的抛物线为y=(x﹣1)2﹣1,
    ∴当x=0时,y=,
    ∴A′的坐标为(0,),
    ∴AA′的长度为:3﹣()=3.
    故选:B.
    【点睛】
    本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
    9、C
    【解析】
    【分析】
    把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
    【详解】
    ∵二次函数的图象与轴的交点坐标是,
    ∴A选项错误;
    ∵二次函数的图象开口向上,对称轴是直线,
    ∴当时,的值随值的增大而增大,
    ∴B选项错误;
    ∵当取和时,所得到的的值都是11,
    ∴C选项正确;
    ∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
    ∴D选项错误.
    故选:C.
    【点睛】
    本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
    10、D
    【解析】
    【分析】
    由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
    【详解】
    解:由图象的性质可知,在直线处取得最大值
    ∴将代入中得
    ∴最大值为2
    故答案为:2.
    【点睛】
    本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
    二、填空题
    1、y=-x2-2x+3
    【解析】
    【分析】
    根据图象与x、y轴的交点坐标和对称轴,利用待定系数法求二次函数的解析式即可.
    【详解】
    解:设该二次函数的解析式为y=ax2+bx+c(a≠0),
    由图象知:当x=1时,y=0,当x=0时,y=3,又对称轴为直线x=-1,
    则,解得:,
    ∴该二次函数的解析式为y=-x2-2x+3,
    故答案为:y=-x2-2x+3.
    【点睛】
    本题考查二次函数的图象与性质、待定系数法求二次函数的解析式,熟练掌握待定系数法求二次函数的解析式是解答的关键.
    2、1
    【解析】
    【分析】
    把点代入得,再代入进行配方求解即可.
    【详解】
    解:∵点在抛物线上,



    ∴的最小值是1,
    故答案为:1
    【点睛】
    本题主要考查了二次函数的性质,能用含a的代数式表示出2a+b是解答本题的关键.
    3、或## 或
    【解析】
    【分析】
    根据图像即可得出时,抛物线的图像在直线的上方,即可得出x的取值范围.
    【详解】
    如图所示,抛物线与直线的交点为,,
    ∴当时,或.
    故答案为:或.
    【点睛】
    此题主要考查了二次函数与不等式,正确解读函数图象是解题关键.
    4、3或-5##-5或3
    【解析】
    【分析】
    将A点坐标代入得,解得,原方程变为,因式分解法解方程即可.
    【详解】
    解:将A点坐标代入得
    解得
    ∴原方程变为

    ∴或
    解得的值为3或
    故答案为:3或.
    【点睛】
    本题考查了解一元二次方程,二次函数与一元二次方程的关系.解题的关键在于理解二次函数与一元二次方程的关系.
    5、①③④
    【解析】
    【分析】
    根据抛物线开口方向,对称轴以及与轴的交点即可判断①;根据、的符号得出,即可得到,根据时,得到,即可得到,即可判断②;根据抛物线与一元二次方程的关系即可判断③;根据抛物线的对称性即可判断④.
    【详解】
    解:抛物线开口向下,

    抛物线交轴于正半轴,



    ,故①正确,
    ,,


    时,,则,

    ,故②错误,
    的图象过点和,
    方程的根为,,
    方程的根为,

    ,故③正确;
    的图象过点和,
    抛物线的对称轴为直线,

    和处的函数值相等,故④正确,
    故答案为:①③④.
    【点睛】
    本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点:抛物线与轴交于;△决定抛物线与轴交点个数:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.
    三、解答题
    1、 (1)
    (2)①;②,当时,;当时,;③
    【解析】
    【分析】
    (1)先确定A(-3,0),B(0,3),分别代入解析式,求得b,c的值即可;
    (2)①利用对称轴与直线y=x+3的交点,确定点C(-1,2),代入解析式中,求的值;
    ②分当<m<1和m≥1两种情况解答即可;
    ③根据得b=m+1,结合前面的解答直接写出的范围即可.
    (1)
    ∵直线分别与轴、轴交于点、,
    ∴A(-3,0),B(0,3),
    把A(-3,0),B(0,3)分别代入解析式,得

    解得
    ∴抛物线的解析式为:.
    (2)
    ①∵的对称轴为直线,直线AB的解析式为y=x+3,
    ∴点、,
    ∵点和点重合,
    ∴,
    解得:,
    ∵,
    ∴.
    ②∵点、,且点D在点C的下方,
    ∴CD=2-()=;
    ∵点D在点C的下方,
    ∴,
    当x=1时,,
    ∵轴,
    ∴点F的纵坐标为,
    ∴=即=0,
    解得x== -1±|m-1|,
    当时,x=-1+1-m=-m,此时,交点D不满足在C的下方,舍去;
    或x=-1-1+m=m-2,
    ∴EF=;
    当m≥1时,x=-1+m-1=m-2,此时,交点D不满足在C的下方,舍去;
    或x=-1-m+1=-m,
    ∴EF=.
    ③∵,
    ∴=,
    ∴=,
    ∴b=m+1,b=-(m+1)舍去,
    ∴m≥1.
    【点睛】
    本题考查了待定系数法确定解析式,一元二次方程的解法,抛物线的平移,熟练掌握抛物线的性质,正确解方程是解题的关键.
    2、 (1)
    (2)证明见解析
    (3)
    【解析】
    【分析】
    (1)根据函数图象的性质可知,当时,, ,,有,求解即可;
    (2)如图,分别过点作交点分别为,设两点横坐标分别为,由题意知:,, ,,;有,,,,故可证;
    (3)平移后的二次函数解析式为,与y轴的交点坐标为,可知,有相同的纵坐标,可得,解得,知点横纵标,在点一次函数与二次函数相交,有相同的纵坐标,可得,进而可得的关系.
    (1)
    解:∵,
    ∴根据函数图象的性质可知,当时,,


    解得.
    (2)
    证明:如图,分别过点作交点分别为


    设两点横坐标分别为,
    由题意知:
    ∴,



    ∵,


    ∴.
    (3)
    解:由题意知,平移后的二次函数解析式为,与y轴的交点坐标为,


    ∴有相同的纵坐标

    解得
    故可知点横纵标
    ∵在点一次函数与二次函数相交,有相同的纵坐标

    解得.
    【点睛】
    本题考查了一次函数与二次函数的综合,相似三角形等知识.解题的关键在于灵活运用知识求解.
    3、 (1)y=-x+120;
    (2)最大日利润是2025元.
    【解析】
    【分析】
    (1)根据题中所给的表格中的数据,利用待定系数法可得其关系式,也可以根据关系直接写出关系式;
    (2)根据利润等于每件的利润乘以件数,再利用配方法求得其最值.
    (1)
    解:设解析式为y=kx+b,
    将(40,80)和(60,60)代入,可得,
    解得:,
    所以y与x的关系式为y=-x+120;
    (2)
    解:设公司销售该商品获得的日利润为w元,
    w=(x-30)y=(x-30)(-x+120)
    =-x2+150x-3600
    =-(x-75)2+2025,
    ∵x-30≥0,-x+120≥0,
    ∴30≤x≤120,
    ∵-1<0,
    ∴抛物线开口向下,函数有最大值,
    ∴当x=75时,w最大=2025,
    答:当销售单价是75元时,最大日利润是2025元.
    【点睛】
    本题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数的应用,在解题的过程中,注意正确找出等量关系是解题的关键,属于基础题目.
    4、 (1)
    (2)
    (3)存在,.
    【解析】
    【分析】
    (1)利用待定系数法即可求得答案;
    (2)如图1,过点P作PD∥y轴,交x轴于点D,交BC于点E,作CF⊥PD于点F,连接PB,PC,设点P(m,m2-2m-3),则点E (m,,可得出PE=,再通过解方程组求出点C的坐标为,利用三角形面积公式和二次函数性质即可得出答案;
    (3)设M(t,t2-2t-3),N(n,,作MG⊥y轴于点G,NH⊥x轴于H,证明△OGM≌△OHN(AAS),得出GM=NH,OG=OH,建立方程组求解即可.
    (1)
    将点,代入中,得:

    解得,
    ∴该抛物线表达式为:
    (2)
    如图1,过点P作PD//y轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,

    设点,则点,

    联立方程组
    解得,,
    ∵点B的坐标为(3,0)
    ∴点C的坐标为




    (其中)

    ∴这个二次函数有最大值,
    ∴当时,的最大值为;
    (3)
    存在,
    ①如图②,

    设,N(n,,
    作MG⊥y轴于点G,NH⊥x轴于H,
    ∴∠OGM=∠OHN=90°,
    ∵OM=ON,∠MON=90°,∠GOH=90°,
    ∴∠MOG=∠NOH,
    在△OGM与△OHN中,

    ∴△OGM≌△OHN(AAS),
    ∴GM=NH,OG=OH,
    ∴,
    解得:,,
    ∴N1(3,0),N2,
    ②如图3,设M(t,t2﹣2t﹣3),N(n,,

    作MG⊥x轴于点G,NH⊥x轴于H,
    ∴∠OGM=∠OHN=90°,
    ∵OM=ON,∠MON=90°,∠GOH=90°,
    ∴∠MOG=∠NOH,
    在△OGM与△OHN中,

    ∴△OGM≌△OHN(AAS),
    ∴GM=NH,OG=OH,
    ∴,
    解得:,
    ∴;
    综上所述,点N的坐标为.
    【点睛】
    本题考查了待定系数法求函数的解析式、二次函数的图象与性质、几何图形的旋转、全等三角形的判定与性质及一元二次方程等知识点,运用数形结合思想、分类讨论思想及熟练掌握全等三角形判定和性质及二次函数性质是解题的关键.
    5、 (1)24元;
    (2)当m=35时,w最大=7260元.
    【解析】
    【分析】
    (1)设去年这种水果的批发价为x元/千克,今年的销量-去年的销量=1000列方程解方程即可;
    (2)设每千克的平均销售价为m元,根据总利润=每千克利润×销量列函数关系式w=(m-24)(300+)配方为顶点式,利用函数性质求即即可.
    (1)
    解:设去年这种水果的批发价为x元/千克,
    根据题意得:,
    整理得:3000-2400=24x,
    解得x=25,
    经检验符合题意,
    元;
    (2)
    解:设每千克的平均销售价为m元,
    w=(m-24)(300+),
    =,
    =,
    ∵a=-60<0,
    抛物线开口向下,函数有最大值,
    当m=35时,w最大=7260元.
    【点睛】
    本题考查列分式方程解应用题,列二次函数解应用题,掌握列分式方程解应用题的方法与步骤,列二次函数解应用题方法是解题关键.

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试优秀一课一练:

    这是一份冀教版九年级下册第30章 二次函数综合与测试优秀一课一练,共30页。试卷主要包含了对于抛物线下列说法正确的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试精品练习:

    这是一份数学九年级下册第30章 二次函数综合与测试精品练习,共23页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    数学冀教版第30章 二次函数综合与测试优秀课后作业题:

    这是一份数学冀教版第30章 二次函数综合与测试优秀课后作业题,共35页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map