北京课改版八年级下册第十五章 四边形综合与测试随堂练习题
展开这是一份北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共25页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为( )
A.2 B.4 C.4或 D.2或
2、下列图形既是中心对称图形,又是轴对称图形的是( )
A. B.
C. D.
3、下列图形中,是中心对称图形的是( )
A. B.
C. D.
4、下列说法中,不正确的是( )
A.四个角都相等的四边形是矩形
B.对角线互相平分且平分每一组对角的四边形是菱形
C.正方形的对角线所在的直线是它的对称轴
D.一组对边相等,另一组对边平行的四边形是平行四边形
5、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )
A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD
C.AD=AE D.AE=CE
6、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )
A.180° B.220° C.240° D.260°
7、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
A. B.
C. D.
8、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).
A.4 B.10 C.6 D.8
9、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是( )
A. B. C. D.
10、下列图形中,是中心对称图形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平行四边形ABCD中,∠B=45°,AD=8,E、H分别为边AB、CD上一点,将▱ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FG⊥CD,CG=4,则EF的长度为 _____.
2、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
3、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=____
4、若正边形的每个内角都等于120°,则这个正边形的边数为________.
5、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则m﹣n的值是___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且AD=AF.
(1)判断四边形ABFC的形状并证明;
(2)若AB=3,∠ABC=60°,求EF的长.
2、(探究发现)
(1)如图1,△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=90°,则AE、AF、AB之间满足的数量关系是 .
(类比应用)
(2)如图2,△ABC中,AB=AC,∠BAC=120°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=60°,试探究AE、AF、AB之间满足的数量关系,并说明理由.
(拓展延伸)
(3)在△ABC中,AB=AC=5,∠BAC=120°,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE=1,∠EDF=60°,请直接写出AF的长.
3、如图,在Rt△ABC中,∠ACB=90°.
(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);
(2)求证:四边形CEDF是矩形.
4、如图,的对角线与相交于点O,过点B作BPAC,过点C作CPBD,与相交于点P.
(1)试判断四边形的形状,并说明理由;
(2)若将改为矩形,且,其他条件不变,求四边形的面积;
(3)要得到矩形,应满足的条件是_________(填上一个即可).
5、如图,是的中位线,延长到,使,连接.
求证:.
-参考答案-
一、单选题
1、D
【分析】
根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
【详解】
解:当△EAP与△PBQ全等时,有两种情况:
①当EA=PB时,△APE≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴BP=AE=6cm,AP=4cm,
∴BQ=AP=4cm;
∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
∴点P和点Q的运动时间为:4÷2=2s,
∴v的值为:4÷2=2cm/s;
②当AP=BP时,△AEP≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴AP=BP=5cm,BQ=AE=6cm,
∵5÷2=2.5s,
∴2.5v=6,
∴v=.
故选:D.
【点睛】
本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
2、D
【分析】
一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
【详解】
A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
B、是轴对称图形,但不是中心对称图形,故不符合题意;
C、是中心对称图形,但不是轴对称图形,故不符合题意;
D、既是中心对称图形,也是轴对称图形,故符合题意.
【点睛】
本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
3、B
【分析】
根据中心对称图形的定义求解即可.
【详解】
解:A、不是中心对称图形,不符合题意;
B、是中心对称图形,符合题意;
C、不是中心对称图形,不符合题意;
D、不是中心对称图形,不符合题意.
故选:B.
【点睛】
此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
4、D
【分析】
根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.
【详解】
解:A、四个角都相等的四边形是矩形,说法正确;
B、正方形的对角线所在的直线是它的对称轴,说法正确;
C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;
D、一组对边相等且平行的四边形是平行四边形,原说法错误;
故选:D.
【点睛】
本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.
5、D
【分析】
根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.
【详解】
解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
∴∠BAC=∠CAB′,
∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠CAB′,
∴AE=CE,
∴结论正确的是D选项.
故选D.
【点睛】
本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.
6、C
【分析】
根据四边形内角和为360°及等边三角形的性质可直接进行求解.
【详解】
解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,
∴;
故选C.
【点睛】
本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.
7、C
【分析】
利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
【详解】
解:A、不是中心对称图形,故A错误.
B、不是中心对称图形,故B错误.
C、是中心对称图形,故C正确.
D、不是中心对称图形,故D错误.
故选:C.
【点睛】
本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
8、B
【分析】
根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
【详解】
解:∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵点P,D分别是AF,AB的中点,
∴PD=BF=6,PD//BC,
∴∠PDA=∠CBA,
同理,QD=AE=8,∠QDB=∠CAB,
∴∠PDA+∠QDB=90°,即∠PDQ=90°,
∴PQ==10,
故选:B.
【点睛】
本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
9、B
【分析】
利用中心对称图形的定义判断即可.
【详解】
解:根据中心对称图形的定义可知,②满足条件.
故选:.
【点睛】
本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.
10、A
【分析】
把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.
【详解】
解:选项A中的图形是中心对称图形,故A符合题意;
选项B中的图形不是中心对称图形,故B不符合题意;
选项C中的图形不是中心对称图形,故C不符合题意;
选项D中的图形不是中心对称图形,故D不符合题意;
故选A
【点睛】
本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.
二、填空题
1、
【分析】
延长CF与AB交于点M,由平行四边形的性质得BC长度,GM⊥AB,由折叠性质得GF,∠EFM,进而得FM,再根据△EFM是等腰直角三角形,便可求得结果.
【详解】
解:延长CF与AB交于点M,
∵FG⊥CD,AB∥CD,
∴CM⊥AB,
∵∠B=45°,BC=AD=8,
∴CM=4,
由折叠知GF=AD=8,
∵CG=4,
∴MF=CM-CF=CM-(GF-CG)=4-4,
∵∠EFC=∠A=180°-∠B=135°,
∴∠MFE=45°,
∴EF=MF=(4-4)=8-4.
故答案为:8-4.
【点睛】
本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形.
2、或
【分析】
分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
【详解】
如图:当将纸片沿纵向对折
根据题意可得:
为的三等分点
在中有
如图:当将纸片沿横向对折
根据题意得:,
在中有
为的三等分点
故答案为:或
【点睛】
本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
3、6
【分析】
根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题.
【详解】
解:由题意得:
(n-2)×180°=360°×2,
解得:n=6;
故答案为6.
【点睛】
本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键.
4、6
【分析】
多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解.
【详解】
解:设所求正边形边数为,
则,
解得,
故答案是:6.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.
5、9
【分析】
根据关于原点对称点的坐标特征求出、的值,再代入计算即可.
【详解】
解:点与点关于原点成中心对称,
,,
即,,
,
故答案为:9.
【点睛】
本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.
三、解答题
1、(1)矩形,见解析;(2)3
【分析】
(1)利用AAS判定△ABE≌△FCE,从而得到AB=CF;由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;
(2)先证△ABE是等边三角形,可得AB=AE=EF=3.
【详解】
解:(1)四边形ABFC是矩形,理由如下:
∵四边形ABCD是平行四边形,
∴,
∴∠BAE=∠CFE,∠ABE=∠FCE,
∵E为BC的中点,
∴EB=EC,
在△ABE和△FCE中,
,
∴△ABE≌△FCE(AAS),
∴AB=CF.
∵,
∴四边形ABFC是平行四边形,
∵AD=BC,AD=AF,
∴BC=AF,
∴四边形ABFC是矩形.
(2)∵四边形ABFC是矩形,
∴BC=AF,AE=EF,BE=CE,
∴AE=BE,
∵∠ABC=60°,
∴△ABE是等边三角形,
∴AB=AE=3,
∴EF=3.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键.
2、(1)AB=AF+AE;(2)AE+AF=AB,理由见解析;(3)或
【分析】
(1)证明△BDF≌OADE,可得BF=AE,从而证明AB=AF+AE;
(2)取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;
(3)分两种情况:当点E在线段AC上时或当点E在AC延长线上时,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AF=HE,从而求解.
【详解】
(1)
如图1,∵AB=AC,∠BAC=90°,
∴∠B=∠C=45°,
∵D为BC中点,
∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,
∴∠ADB=∠ADF+∠BDF=90°,
∵∠EDF=∠ADE+∠ADF=90°,
∴∠BDF=∠ADE,
∵BD=AD,∠B=∠CAD=45°,
∴△BDF≌△ADE(ASA),
∴BF=AE,
∴AB=AF+BF=AF+AE;
故答案为:AB=AF+AE;
(2)
AE+AF=AB.理由是:
如图2,取AB中点G,连接DG,
∵点G是斜边中点,
∴DG=AG=BG=AB,
∵AB=AC,∠BAC=120°,点D为BC的中点,
∴∠BAD=∠CAD=60°,
∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,
又∵∠FAD+∠ADE=∠FDE=60°,
∴∠GDF=∠ADE,
∵DG=AG,∠BAD=60°,
∴△ADG为等边三角形,
∴∠AGD=∠CAD=60°,GD=AD,
∴△GDF≌△ADE(ASA),
∴GF=AE,
∴AG=AB=AF+FG=AE+AF,
∴AE+AF=AB;
(3)
当点E在线段AC上时,如图3,取AC的中点H,连接DH,
当AB=AC=5,CE=1,∠EDF=60°时,
AE=4,此时F在BA的延长线上,
同(2)可得:△ADF≌△HDE (ASA),
∴AF=HE,
∵AH=CH=AC=,CE=1,
∴,
当点E在AC延长线上时,如图4,
同理可得:;
综上:AF的长为或.
【点睛】
本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键
3、(1)见解析(2)见解析
【分析】
(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.
(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.
【详解】
(1)答案如下图所示:
分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.
(2)证明:点是AB与其垂直平分线l的交点,
点是AB的中点,
是Rt△ABC上的斜边的中线,
,
DE、DF分别是ADC,∠BDC的角平分线,
,,
,
,
,
,
,
在四边形CEDF中,,
四边形CEDF是矩形.
【点睛】
本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.
4、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)
【分析】
(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.
(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.
(3)添加的条件只要可以证明即可得到矩形.
【详解】
解:(1)四边形BPCO是平行四边形,
∵BP∥AC,CP∥BD,
∴四边形BPCO是平行四边形.
(2)连接OP.
∵四边形ABCD是矩形,
∴OB=BD,OC=AC,AC=BD,∠ABC=90°,
∴OB=OC.
又四边形BPCO是平行四边形,
∴□BPCO是菱形.
∴OP⊥BC.
又∵AB⊥BC,
∴OP∥AB.
又∵AC∥BP,
四边形是平行四边形,
∴OP=AB=6.
∴S菱形BPCO=.
(3)AB=BC或AC⊥BD等(答案不唯一).
当AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形,
当AC⊥BD时,利用含有的平行四边形为矩形,即可得到矩形.
【点睛】
本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.
5、见解析
【分析】
由已知条件可得DF=AB及DF∥AB,从而可得四边形ABFD为平行四边形,则问题解决.
【详解】
∵是的中位线
∴DE∥AB,,AD=DC
∴DF∥AB
∵EF=DE
∴DF=AB
∴四边形ABFD为平行四边形
∴AD=BF
∴BF=DC
【点睛】
本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键.当然本题也可以用三角形全等的知识来解决.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共29页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题,共23页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共32页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。

