


【高频真题解析】2022年上海市普陀区中考数学第三次模拟试题(含详解)
展开
这是一份【高频真题解析】2022年上海市普陀区中考数学第三次模拟试题(含详解),共23页。
2022年上海市普陀区中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点C、D分别是线段AB上两点(,),用圆规在线段CD上截取,,若点E与点F恰好重合,,则( )A.4 B.4.5 C.5 D.5.52、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>1253、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. B. C. D.4、如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4﹣4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4﹣4,其中正确的个数有( )个.A.3 B.2 C.1 D.05、下列一元二次方程有两个相等的实数根的是( )A. B. C. D. 6、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.167、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )A.个 B.个 C.个 D.个8、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).A. B.0 C. D.9、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )A.11.5×108 B.1.15×108 C.11.5×109 D.1.15×10910、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )A.60° B.120° C.135° D.150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=34°,则∠2=_____°.2、用13米长的篱笆围成一个面积为20平方米的长方形场地,其中一边靠墙,若设垂直于墙的一边为x,则可列出的方程是 ___;3、万盛是重庆茶叶生产基地和名优茶产地之一,以“重庆第一泡•万盛茶飘香”为主题的采茶制茶、品茶赏茶,茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款2021年的新茶:清明香,云雾毛尖、滴翠剑茗.第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1,由于品质优良宣传力度大,网上的预订量暴增,举办方加紧采制了第二批同种类型的茶叶,其中清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为500元、420元,380元,清明香的售价为每盒640元,活动中将清明香的供游客免费品尝,活动结束时两批茶叶全部卖完,总利润率为16%,且云雾毛尖的销售单价等于另外两种茶叶销售单价之和的,则滴翠剑茗单价为____元4、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是2,则△BOC的面积是 ___.5、长方形纸片ABCD,点E、F分别在边AB、AD上,连接EF,将沿EF翻折,得到,连接CE,将翻折,得到,点恰好落在线段上,若,则__________°.三、解答题(5小题,每小题10分,共计50分)1、如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长.2、某店以一共500元进价购得甲、乙两件商品,然后将甲、乙两件商品分别按和的利润标定出售价.(1)如果按上述进价和售价进行交易,那么该店买卖这两件商品能否盈利260元?为什么?(2)如果该店按原定售价八折促销,某顾客同时购买了甲、乙两种商品,实际付款584元,那么甲、乙两商品原进价各多少元?3、如图,射线、、、分别表示从点出发的向北、东、南、西四个方向,将直角三角尺的直角顶点与点重合.(1)图中与互余的角是_______;(2)①用直尺和圆规作的平分线;(不写作法,保留作图痕迹)②在①所做的图形中,如果,那么点在点的_______方向.4、分解因式:(1);(2).5、解方程:(x+2)(x﹣3)=4x+8; -参考答案-一、单选题1、A【分析】根据题意可得,,再由即可得到答案.【详解】解:CE=AC,DF=BD,点E与点F恰好重合,∴CE=AC,DE=BD,∴,,∴,故选A.【点睛】本题主要考查了与线段中点有关的计算,解题的关键在于能够根据题意得到,.2、D【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.【详解】解:由题意可得,10x-5(20-x)>125,故选:D.【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.3、C【分析】由数轴可得: 再逐一判断的符号即可.【详解】解:由数轴可得: 故A,B,D不符合题意,C符合题意;故选C【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.4、A【分析】①正确,如图1中,连接AM,延长DE交BF于J,想办法证明BF⊥DJ,AM⊥DJ即可;②正确,如图2中,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;③正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题.【详解】解:①如下图,连接AM,延长DE交BF于J,∵四边形ABCD是正方形,∴AB=AD,∠DAE=∠BAF=90°,由题意可得AE=AF,∴△BAF≌△DAE(SAS),∴∠ABF=∠ADE,∵∠ADE+∠AED=90°,∠AED=∠BEJ,∴∠BEJ+∠EBJ=90°,∴∠BJE=90°,∴DJ⊥BF,由翻折可知:EA=EM,DM=DA,∴DE垂直平分线段AM,∴BF∥AM,故①正确;②如下图,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,则由题意可得∠M=90°,∴∠MEJ=∠MJE=45°,∴∠JED=∠JDE=22.5°,∴EJ=JD,设AE=EM=MJ=x,则EJ=JD=x,则有x+x =4,∴x=4﹣4,∴AE=4﹣4,故②正确;③如下图,连接CF,当EF=CE时,设AE=AF=m,则在△BCE中,有2m²=4²+(4-m)2,∴m=4﹣4或-4﹣4 (舍弃),∴AE=4﹣4,故③正确;故选A.【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.5、B【分析】根据一元二次方程根的判别式判断即可.【详解】解:、△,方程有两个不等实数根,不符合题意;、△,方程有两个相等实数根,符合题意;、△,方程有两个不相等实数根,不符合题意;、△,方程没有实数根,不符合题意;故选:B.【点睛】本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.6、B【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.7、C【分析】根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①如图,开口向上,得,,得,抛物线与轴交于负半轴,即,,故①错误;②如图,抛物线与轴有两个交点,则;故②正确;③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,故③正确;④如图所示,当时,,根的个数为与图象的交点个数,有两个交点,即有两个根,故④正确;综上所述,正确的结论有3个.故选:C.【点睛】主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.【详解】解:由图可知:,∴,,,,∴,故选:C.【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.9、D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:11.5亿=1150000000=1.5×109.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【分析】观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.【详解】∠α=故选:B.【点睛】本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.二、填空题1、56【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=34°,∴∠3=90°﹣34°=56°.∵直尺的两边互相平行,∴∠2=∠3=56°.故答案为:56.【点睛】本题考查平行线的性质、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、x(13-2x)=20【分析】若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,根据长方形场地的面积为20平方米,即可得出关于x的一元二次方程,此题得解.【详解】解:若设垂直于墙的一边长为x米,则平行于墙的一边长为(13-2x)米,依题意得:x(13-2x)=20.故答案为:x(13-2x)=20.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、480【分析】设滴翠剑茗单价为元,则云雾毛尖最高价位元,根据云雾毛尖的销售单价等于另外两种茶叶销售单价之和的得出三种茶叶的单价,根据销售总额列出方程,解方程即可.【详解】解:第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒之比为,第二批采制后清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等,即云雾毛尖、滴翠剑茗的数量各占,增加后清明香、云雾毛尖、滴翠剑茗的数量(盒之比为,设总共有盒茶叶,成本为(元,销售额应为(元,清明香的销售额为(元,另外两种茶的销售总额为(元,设滴翠剑茗单价为元,则云雾毛尖单价为元,因此可建立方程,解得,因此滴翠剑茗单价为480元,故答案为:480.【点睛】本题主要考查一元一次方程的知识,根据售价成本利润列出方程是解题的关键.4、3【分析】根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得.【详解】解:∵,∴与高相等,∴,又∵,∴,故答案为:3.【点睛】题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键.5、61【分析】由翻折得到,根据,得到,利用求出答案.【详解】解:由翻折得,,∵,∴,∵∴,故答案为:61.【点睛】此题考查了翻折的性质,角度的计算,正确掌握翻折的性质是解题的关键.三、解答题1、(1)见解析(2)【分析】(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.【小题1】解:证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵CF∥ED,∴四边形CDEF是平行四边形,∵DC=DE.∴四边形CDEF是菱形;【小题2】如图,连接GF,∵四边形CDEF是菱形,∴CF=CD=5,∵BC=3,∴BF=,∴AF=AB-BF=5-4=1,在△CDG和△CFG中,,∴△CDG≌△CFG(SAS),∴FG=GD,∴FG=GD=AD-AG=3-AG,在Rt△FGA中,根据勾股定理,得FG2=AF2+AG2,∴(3-AG)2=12+AG2,解得AG=.【点睛】本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.2、(1)该店买卖这两件商品不可能盈利260元,原因见解析(2)甲商品的原进价为300元,乙商品的原进价为200元【分析】(1)利用获得的总利润=两件商品的进价之和×50%,可求出两件商品均按50%的利润销售可获得的利润,由该值小于260即可得出结论;(2)设甲商品的原进价为x元,则乙商品的原进价为(500-x)元,根据某顾客按八折购买共付款584元,即可得出关于x的一元一次方程,解之即可得出结论.(1)(元,,该店买卖这两件商品不可能盈利260元.(2)设甲商品的原进价为元,则乙商品的原进价为元,依题意得:,解得:,.答:甲商品的原进价为300元,乙商品的原进价为200元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.3、(1)、(2)①作图见解析;②北偏东或东偏北【分析】(1)由题可知,故可知与互余的角;(2)①如图所示,以O为圆心画弧,分别与OE、OA相交;以两交点为圆心,大于两点长度的一半为半径画弧,连接两弧交点与O点的射线即为角平分线;②,,进而得出P与O有关的位置.(1)解:图中与互余的角是和;故答案为:、.(2)①如图,为所作;②,,平分,,,即点在点的北偏东方向或东偏北故答案为:北偏东或东偏北.【点睛】本题考查了余角,角平分线以及坐标系中的位置.解题的关键在于正确的求解角度.4、(1)(2)【分析】(1)提取公因式,然后用完全平方公式进行化简即可.(2)提取公因式,然后用平方差公式进行化简即可.(1)解:原式;(2)解:原式.【点睛】本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.5、x1=7,x2=-2【分析】方程整理为一般形式,利用公式法求出解即可.【详解】解:方程整理得:x2-5x-14=0,则a=1,b=-5,c=-14,∵b2-4ac=25+56=81>0,∴x=,解得:x1=7,x2=-2.【点睛】此题考查了解一元二次方程-公式法,熟练掌握求根公式是解本题的关键.
相关试卷
这是一份【真题汇总卷】2022年上海市普陀区中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共21页。试卷主要包含了下列利用等式的性质,错误的是,如图,在中,,,则的值为,的相反数是等内容,欢迎下载使用。
这是一份【难点解析】2022年上海市普陀区中考数学模拟真题练习 卷(Ⅱ)(含详解),共26页。试卷主要包含了下列判断错误的是,下列命题中,是真命题的是,二次函数y=等内容,欢迎下载使用。
这是一份【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解),共25页。试卷主要包含了下列计算正确的是,-6的倒数是,已知ax2+24x+b=等内容,欢迎下载使用。
