年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    7.5 第1课时 三角形内角和定理1 教案

    7.5  第1课时 三角形内角和定理1 教案第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学5 三角形的内角和定理第1课时教学设计及反思

    展开

    这是一份初中数学5 三角形的内角和定理第1课时教学设计及反思,共3页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
    第1课时 三角形内角和定理





    1.理解并掌握三角形内角和定理及其证明过程;(重点)


    2.能利用三角形内角和定理进行简单的计算和证明.(难点)











    一、情境导入


    星期天,小明和几位同学一起做作业时,其中一位同学不小心把三角板的两个角给压断了.小明将两个角和剩余的一个角放在一起,发现这三个角之和是一个平角.我们知道一个平角是180°,即这个三角形的三个内角之和为180°,那其他的三角形也是这样吗?如何证明呢?


    下面让我们一起进入本节的学习,一起探究如何证明三角形的内角和等于180°.





    二、合作探究


    探究点一:三角形内角和定理


    在△ABC中,如果∠A=eq \f(1,2)∠B=eq \f(1,2)∠C,求∠A、∠B、∠C分别等于多少度?


    解析:这是一道利用三角形内角和求各角度的计算题,由已知得∠B=∠C=2∠A.因此可以先求∠A,再求∠B、∠C.


    解:∵∠A=eq \f(1,2)∠B=eq \f(1,2)∠C(已知),∴∠B=∠C=2∠A(等式的性质).∵∠A+∠B+∠C=180°(三角形的内角和等于180°),∴∠A+2∠A+2∠A=180°(等量代换).∴∠A=36°,∠B=72°,∠C=72°.


    方法总结:求三角形内角度数时,要充分利用各角之间的关系,用其中一个角表示另外两个角,再借助三角形的内角和定理构建方程.





    探究点二:三角形内角和定理的证明


    已知:如图,在△ABC中.





    求证:∠A+∠B+∠C=180°.


    解析:要证明三角形的内角和是180°,需要从涉及180°角的知识去考虑,涉及180°角的知识有:①平角;②邻补角;③两直线平行下的同旁内角.可从这三个方面分别考虑,添加辅助线.


    证明:证法1:(如图①)过点A作PQ∥BC,则∠1=∠B,∠2=∠C(两直线平行,内错角相等).∵∠1+∠BAC+∠2=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换).


    证法2:(如图②)过点C作CE∥AB,则∠1=∠A(两直线平行,内错角相等),∠B+∠BCE=180°(两直线平行,同旁内角互补).∵∠BCE=∠BCA+∠1,∴∠B+∠BCA+∠1=180°(等量代换),∴∠B+∠BAC+∠A=180°(等量代换).


    证法3:(如图③)过BC边上的一点P作QP∥AC,RP∥AB,交AB于Q,交AC于R,则∠1=∠B,∠2=∠C(两直线平行,同位角相等).∠A=∠BQP=∠QPR(两直线平行,同位角相等,内错角相等).∵∠1+∠2+∠QPR=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).


    方法总结:三角形内角和定理的证明方法很多,但指导思想都是通过添加辅助线,利用平行线的性质,把三角形三个内角集中起来.





    探究点三:三角形内角和定理的应用


    如图,已知五边形ABCDE.你知道五边形的内角和等于多少度吗?你能运用三角形的内角和定理证明吗?





    解析:我们可以通过先添加辅助线将五边形分割成几个三角形,再利用三角形的内角和定理进行证明.


    解:五边形的内角和等于540°.证明如下:如图,连接AC,AD.由三角形内角和定理可知∠1+∠2+∠B=180°,∠3+∠4+∠5=180°,∠6+∠7+∠E=180°,∴∠1+∠2+∠B+∠3+∠4+∠5+∠6+∠7+∠E=540°.又∵∠1+∠5+∠7=∠BAE,∠2+∠3=∠BCD,∠4+∠6=∠CDE,∴∠BAE+∠B+∠BCD+∠CDE+∠E=540°.∴五边形的内角和等于540°.





    方法总结:求多边形的内角和时,通常利用一个顶角与其他顶角的连线将其分割成几个三角形,转化为三角形的内角和来解决.





    三、板书设计


    三角形内,角和定理)eq \b\lc\{(\a\vs4\al\c1(定理:三角形的内角和等于180°,定理的证明:作平行线,将三个内, 角拼成一个平角,定理的应用))











    通过自主探究与合作交流的学习方式,使学生形成一定的逻辑思维能力和推理能力;用多种方法证明三角形内角和定理,培养学生一题多解的能力;对比过去撕纸等探索过程,体会几何证明的严密性和数学的严谨性,培养学生的逻辑推理能力.





    相关教案

    【同步教案】北师大版数学八年级上册--7.5 三角形内角和定理的证明 教案:

    这是一份【同步教案】北师大版数学八年级上册--7.5 三角形内角和定理的证明 教案,共5页。

    初中数学5.5 三角形内角和定理教案:

    这是一份初中数学5.5 三角形内角和定理教案,共10页。教案主要包含了共性特征,个性特征等内容,欢迎下载使用。

    初中数学青岛版八年级上册5.5 三角形内角和定理教案:

    这是一份初中数学青岛版八年级上册5.5 三角形内角和定理教案,共5页。教案主要包含了学生知识状况分析,教学任务分析,教学过程分析,教学反思等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map