- 1、认识一元二次方程 教案 教案 3 次下载
- 2、用配方法解一元二次方程 教案 教案 3 次下载
- 4、用因式分解法求一元二次方程 教案 教案 3 次下载
- 5、一元二次方程的根与系数的关系 教案 教案 4 次下载
- 6、一元二次方程的应用 教案 教案 4 次下载
数学九年级上册3 用公式法求解一元二次方程教案设计
展开知识点一:解一元二次方程的万能公式
一元二次方程的求根公式
一般地,对于一元二次方程,当时,它的根是
这个式子称为一元二次方程的求根公式
理解:万能公式的由来是由配方法推导得出;
探究:用配方法怎么配?
配方法求一元二次方程的解的步骤:
先化一般式;
(2)确定公式中,,的值;(连同系数前面的符号)
(3)求出的值;
(4)当时,代入公式求值,当,此方程无解
考点一:根与系数的判别式
【例1】方程化为一般式后,则,,,
【例2】已知方程的根的判别式的值为,则
【例3】一元二次方程的根的情况是()
有两根相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定
【例4】方程有两个实数根,则的取值范围是
【例5】关于的一元二次方程有实数根,则的取值范围是
【例6】已知关于的方程
若此方程的一个根是1,求的值
求证:不论取何值,此方程都有两个不相等的实数根
利用公式法求解一元二次方程
【例1】解下列方程
(2)(3)
【例2】解下列方程
(2)
课堂小练
方程化为一般式后,,,的值为()
,,B.,,
C.,,D. ,,
2、方程中,的值为()
A. -16B. 16C. 4D. -4
3、已知方程的根的判别式的值为,则的值()
A. B. C. D.
4、一元二次方程的根的情况()
A. 有两根相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定
5、若关于的一元二次方程有实数根,则的非负整数值是
6、若关于的一元二次方程有两个不相等的实数根,则的取值范围是
7、解下列方程
(1)(2)(3)
将一条长为的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形
要使这两个正方形的面积之和等于,那么这段铁丝剪成的两段长度分别是多少?
两个正方形的面积之和可能等于吗?若能求出两段铁丝的长度,若不能,请说明理由
初中数学北师大版九年级上册3 用公式法求解一元二次方程优质教案及反思: 这是一份初中数学北师大版九年级上册3 用公式法求解一元二次方程优质教案及反思,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳总结等内容,欢迎下载使用。
数学七年级下册3.3 公式法精品第1课时教学设计: 这是一份数学七年级下册3.3 公式法精品第1课时教学设计,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
北师大版八年级下册3 公式法第1课时教案设计: 这是一份北师大版八年级下册3 公式法第1课时教案设计,共5页。教案主要包含了教学目标,知识与技能,过程与方法,情感态度,教学重点,教学难点,教学过程等内容,欢迎下载使用。

