





所属成套资源:2025年中考数学一轮复习精品讲义 (2份,原卷版+解析版)
2025年中考数学一轮复习精品讲义第27讲 与圆有关的位置关系(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习精品讲义第27讲 与圆有关的位置关系(2份,原卷版+解析版),文件包含2025年中考数学一轮复习精品讲义第27讲与圆有关的位置关系原卷版docx、2025年中考数学一轮复习精品讲义第27讲与圆有关的位置关系解析版docx等2份试卷配套教学资源,其中试卷共167页, 欢迎下载使用。
TOC \ "1-3" \n \h \z \u \l "_Tc157357295" 一、考情分析
二、知识建构
\l "_Tc157357296" 考点一 点、直线与圆的位置关系
\l "_Tc157357297" 题型01 判断点和圆的位置关系
\l "_Tc157357298" 题型02 根据点和圆的位置关系求半径
\l "_Tc157357299" 题型03 判断直线与圆的位置关系
\l "_Tc157357300" 题型04 根据直线与圆的位置关系求半径
\l "_Tc157357301" 题型05 根据直线与圆的位置关系求点到直线的距离
\l "_Tc157357302" 题型06 求圆平移到与直线相切时圆心坐标
\l "_Tc157357303" 题型07 求圆平移到与直线相切时运动距离
\l "_Tc157357304" 题型08 根据直线与圆的位置关系求交点个数
\l "_Tc157357305" 题型09 圆和圆的位置关系
\l "_Tc157357306" 考点二 切线的性质与判定
\l "_Tc157357307" 题型01 判断或补全使直线成为切线的条件
\l "_Tc157357308" 题型02 利用切线的性质求线段长
\l "_Tc157357309" 题型03 利用切线的性质求角度
\l "_Tc157357310" 题型04 证明某条直线时圆的切线
\l "_Tc157357311" 类型一 由公共点:连半径,证垂直
\l "_Tc157357312" 类型二 无公共点:作垂直,证半径
\l "_Tc157357313" 题型05 利用切线的性质定理证明
\l "_Tc157357314" 题型06 切线的性质与判定的综合运用
\l "_Tc157357315" 题型07 作圆的切线
\l "_Tc157357316" 题型08 应用切线长定理求解
\l "_Tc157357317" 题型09 应用切线长定理求证
\l "_Tc157357318" 考点三 三角形内切圆与外接圆
\l "_Tc157357319" 题型01 判断三角形外接圆圆心位置
\l "_Tc157357320" 题型02 求外心坐标
\l "_Tc157357321" 题型03 已知外心的位置判断三角形形状
\l "_Tc157357322" 题型04 求特殊三角形外接圆的半径
\l "_Tc157357323" 题型05 由三角形的内切圆求长度
\l "_Tc157357324" 题型06 由三角形的内切圆求角度
\l "_Tc157357325" 题型07 由三角形的内切圆求周长、面积
\l "_Tc157357326" 题型08 求三角形的内切圆半径
\l "_Tc157357327" 题型09 直角三角形周长、面积和内切圆半径的关系
\l "_Tc157357328" 题型10 圆外切四边形模型
\l "_Tc157357329" 题型11 三角形内心有关的应用
\l "_Tc157357330" 题型12 三角形外接圆与内切圆综合
考点一 点、直线与圆的位置关系
1. 点和圆的位置关系
已知⊙O的半径为r,点P到圆心O的距离为d,则:
【说明】掌握已知点的位置,可以确定该点到圆心的距离与半径的关系,反过来已知点到圆心的距离与半径的关系,可以确定该点与圆的位置关系.
2. 直线和圆的位置关系
设⊙O的半径为r,圆心O到直线l的距离为d,则直线和圆的位置关系如下表:
【小技巧】判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.
3. 圆和圆之间的位置关系
设⊙O1、⊙O2的半径分别为r、R(其中R>r),两圆圆心距为d,则两圆位置关系如下表:
1. 由于圆是轴对称和中心对称图形,当题目中未给出具体图形时,要结合题意画出符合题意的图形,并进行分类讨论,否则比较容易漏解.
2. 经过一个点作圆,圆心的位置具有任意性;经过两个点作圆,圆心的位置就有了规律性,即圆心位于两点连线的垂直平分线上.
3. 直线和圆的位置关系可以转化为直线与圆的公共点的个数来研究;也可转化为圆心到直线的距离d与半径r的大小关系来研究,这两个角度的论述其实是等价的.
4. 圆与圆之间的有些位置关系有两种情况,做题时要分类讨论,防止漏解:①两圆没有交点:外离或内含;②两圆有一个交点:外切或内切;③两圆有两个交点:两圆心在公共弦同侧或异侧.
题型01 判断点和圆的位置关系
【例1】(2022·广东广州·统考一模)平面直角坐标系中,⊙O的圆心在原点,半径为5,则点P0,4与⊙O的位置关系是( )
A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定
【变式1-1】(2022·广东广州·统考一模)A,B两个点的坐标分别为(3,4),(﹣5,1),以原点O为圆心,5为半径作⊙O,则下列说法正确的是( )
A.点A,点B都在⊙O上B.点A在⊙O上,点B在⊙O外
C.点A在⊙O内,点B在⊙O上D.点A,点B都在⊙O外
【变式1-2】(2022·江苏扬州·校联考一模)若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点A在⊙O .(填“上”、“内”、“外”)
题型02 根据点和圆的位置关系求半径
【例2】(2023·湖北襄阳·统考一模)如图,在△ABC中,∠ACB=90°,AB=5,BC=4.以点A为圆心,r为半径作圆,当点C在⊙A内且点B在⊙A外时,r的值可能是( )
A.2B.3C.4D.5
【变式2-1】(2022·江苏扬州·统考一模)如图,矩形ABCD中,AB=3,BC=4,点P是平面内一点,以P、B、C为顶点的三角形是等腰三角形,则PD的最小值为( )
A.45B.1C.75D.2.5
【变式2-2】(2022·山东枣庄·校考一模)点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O的半径是 .
【变式2-3】(2022·上海静安·统考二模)如图,已知矩形ABCD的边AB=6,BC=8,现以点A为圆心作圆,如果B、C、D至少有一点在圆内,且至少有一点在圆外,那么⊙A半径r的取值范围是 .
题型03 判断直线与圆的位置关系
【例3】(2023·广东广州·华南师大附中校考一模)如图,RtΔABC中,∠C=90°,AB=5,csA=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是( )
A.相离B.相切C.相交D.无法确定
【变式3-1】(2023·江西南昌·统考一模)如图是“光盘行动”的宣传海报,图中餐盘与筷子可看成直线和圆的位置关系是( )
A.相切B.相交C.相离D.平行
【变式3-2】(2023·新疆乌鲁木齐·统考一模)如图,已知Rt△ABC中,∠C=90°,tanA=34.D、E分别是边BC、AB上的点,DE∥AC,且BD=2CD.如果⊙E经过点A,且与⊙D外切,那么⊙D与直线AC的位置关系是( )
A.相离B.相切C.相交D.不能确定
【变式3-3】(2023·四川内江·威远中学校校考一模)已知平面直角坐标系中,点P(x0,y0)和直线Ax+By+C=0(其中A,B不全为0),则点P到直线Ax+By+C=0的距离d可用公式d=Ax0+By0+CA2+B2来计算.
例如:求点P(1,2)到直线y=2x+1的距离,因为直线y=2x+1可化为2x-y+1=0,其中A=2,B=-1,C=1,所以点P(1,2)到直线y=2x+1的距离为:d=Ax0+By0+CA2+B2=2×1+(-1)×2+122+(-1)2=15=55.
根据以上材料,解答下列问题:
(1)求点M(0,3)到直线y=3x+9的距离;
(2)在(1)的条件下,⊙M的半径r = 4,判断⊙M与直线y=3x+9的位置关系,若相交,设其弦长为n,求n的值;若不相交,说明理由.
题型04 根据直线与圆的位置关系求半径
【例4】(2023·重庆开州·统考一模)如图,OA是⊙О的一条半径,点P是OA延长线上一点,过点P作⊙O的切线PB,点B为切点. 若PA=1,PB=2,则半径OA的长为( )
A.43B.32C.85D.3
【变式4-1】(2023·上海浦东新·校考三模)在平面直角坐标系中,以点A4,3为圆心、以R为半径作圆A与x轴相交,且原点O在圆A的外部,那么半径R的取值范围是( )
A.0
相关试卷
这是一份2025年中考数学一轮复习精品讲义第20讲 图形的相似与位似(2份,原卷版+解析版),文件包含2025年中考数学一轮复习精品讲义第20讲图形的相似与位似原卷版docx、2025年中考数学一轮复习精品讲义第20讲图形的相似与位似解析版docx等2份试卷配套教学资源,其中试卷共101页, 欢迎下载使用。
这是一份2025年中考数学一轮复习精品讲义第15讲 几何图形的初步(2份,原卷版+解析版),文件包含2025年中考数学一轮复习精品讲义第15讲几何图形的初步原卷版docx、2025年中考数学一轮复习精品讲义第15讲几何图形的初步解析版docx等2份试卷配套教学资源,其中试卷共131页, 欢迎下载使用。
这是一份2025年中考数学一轮复习精品讲义第06讲 分式方程(2份,原卷版+解析版),文件包含2025年中考数学一轮复习精品讲义第06讲分式方程原卷版docx、2025年中考数学一轮复习精品讲义第06讲分式方程解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
