


浙江省绍兴市阳明中学2024年九年级数学第一学期开学检测试题【含答案】
展开
这是一份浙江省绍兴市阳明中学2024年九年级数学第一学期开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形中,与不平行,分别是的中点,,,则的长不可能是( )
A.1.5B.2C.2.5D.3
2、(4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:
则这15运动员的成绩的众数和中位数分别为( )
A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65
3、(4分)在“爱我汾阳”演讲赛中,小明和其他6名选手参加决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名同学成绩的( )
A.平均数B.众数C.中位数D.方差
4、(4分)下列关于一次函数的说法中,错误的是( )
A.函数图象与轴的交点是
B.函数图象自左至右呈下降趋势,随的增大而减小
C.当时,
D.图象经过第一、二、三象限
5、(4分)下面四个二次根式中,最简二次根式是( )
A.B.C.D.
6、(4分)若kb<0,则一次函数的图象一定经过( )
A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限
7、(4分)下列图形中,不是中心对称图形的是( )
A.B.C.D.
8、(4分)如图,菱形ABCD中,点E,F分别是AC,DC的中点,若EF=3,则菱形ABCD的周长是( )
A.12B.16C.20D.24
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:
请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)
10、(4分)如图,在反比例函数的图象上有四个点,,,,它们的横坐标依次为,,,,分别过这些点作轴与轴的垂线,则图中阴影部分的面积之和为______.
11、(4分)有一组数据:其众数为,则的值为_____.
12、(4分)分解因式:
13、(4分)已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(2011•南京)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中 的折线表示小亮在整个行走过程中y与x的函数关系.
(1)小亮行走的总路程是___________m,他途中休息了_____________min;
(2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
15、(8分)小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.(思考题)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,
得方程______,解方程,得x1=______,x2=______,∴点B将向外移动______米.
(2)解完“思考题”后,小聪提出了如下两个问题:
①(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
②(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.
16、(8分)某学校准备利用今年暑假将旧教学楼进行装修,并要在规定的时间内完成以保证秋季按时开学.现有甲、乙两个工程队,若甲工程队单独做正好可按期完成, 但费用较高;若乙工程队单独做则要延期 4 天才能完成,但费用较低.学校经过预 算,发现先由两队合作 3 天,再由乙队独做,正好可按期完成,且费用也比较合理. 请你算一算,规定完成的时间是多少天?
17、(10分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).
他们的各项成绩如下表所示:
(1)直接写出这四名候选人面试成绩的中位数;
(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.
18、(10分)如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线与轴的交点坐标___________
20、(4分)如图,△ABC 中,AB=BC=12cm,D、E、F 分别是 BC、AC、AB 边上的中点,则四边形 BDEF 的周长是__________cm.
21、(4分)若分式的值为0,则__.
22、(4分)已知等腰三角形两条边的长为4和9,则它的周长______.
23、(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,,分别表示使用一种白炽灯和一种节能灯的费用(费用灯的售价电费,单位:元)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是小时,照明效果一样.
(1)根据图象分别求出,的函数表达式;
(2)小亮认为节能灯一定比白炽灯省钱,你是如何想的?
25、(10分)王老师为了了解学生在数学学习中的纠错情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年级(5)班和八年级(6)班进行了检测.并从两班各随机抽取10名学生的得分绘制成下列两个统计图.根据以上信息,整理分析数据如下:
(1)求出表格中a,b,c的值;
(2)你认为哪个班的学生纠错得分情况比较整齐一些,通过计算说明理由.
26、(12分)一个三角形的三边长分别为5,,.
(1)求它的周长(要求结果化简);
(2)请你给出一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
连接BD,取BD的中点G,连接MG、NG,根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2MG,DC=2NG,再根据三角形的任意两边之和大于第三边得出MN<(AB+DC),即可得出结果.
【详解】
解:如图,连接BD,取BD的中点G,连接MG、NG,
∵点M,N分别是AD、BC的中点,
∴MG是△ABD的中位线,NG是△BCD的中位线,
∴AB=2MG,DC=2NG,
∴AB+DC=2(MG+NG),
由三角形的三边关系,MG+NG>MN,
∴AB+DC>2MN,
∴MN<(AB+DC),
∴MN<3;
故选:D.
本题考查了三角形的中位线定理,三角形的三边关系;根据不等关系考虑作辅助线,构造成以MN为一边的三角形是解题的关键.
2、A
【解析】
1、回忆位中数和众数的概念;
2、分析题中数据,将15名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一个数即为运动员跳高成绩的中位数;
3、根据众数的概念找出跳高成绩中人数最多的数据即可.
【详解】
解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.2,
所以中位数是1.2,
同一成绩运动员最多的是1.1,共有4人,
所以,众数是1.1.
因此,众数与中位数分别是1.1,1.2.
故选A.
本题考查了中位数和众数的计算,解题的关键是理解中位数和众数的概念,直接根据概念进行解答.此外,也考查了学生从图表中获取信息的能力.
3、C
【解析】
7人成绩的中位数是第4名的成绩,参赛选手想要知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有7个人,且他们的分数互不相同,第4名的成绩是中位数,要判断是否进入前4名,故应知道中位数是多少,
故选:C.
考查了中位数的定义,中位数的实际应用,熟记中位数的定义是解题关键.
4、D
【解析】
根据一次函数的图像与性质即可求解.
【详解】
A. 函数图象与轴的交点是,正确;
B. 函数图象自左至右呈下降趋势,随的增大而减小,正确
C. 当时,解得,正确
D. 图象经过第一、二、四象限,故错误.
故选D.
此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质.
5、A
【解析】
分析:根据最简二次根式的概念进行判断即可.
详解:A.是最简二次根式;
B.被开方数含分母,故B不是最简二次根式;
C.被开方数含能开得尽方的因数,故C不是最简二次根式;
D.被开方数含有小数,故D不是最简二次根式.
故选A.
点睛:本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
6、D
【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
【详解】
∵kb0时,b
相关试卷
这是一份浙江省绍兴市元培中学2024年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。
这是一份浙江省绍兴市海亮2024年九年级数学第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江省绍兴市九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。