终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    云南省昆明盘龙区联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    云南省昆明盘龙区联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】第1页
    云南省昆明盘龙区联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】第2页
    云南省昆明盘龙区联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省昆明盘龙区联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】

    展开

    这是一份云南省昆明盘龙区联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在四边形中,动点从点开始沿的路径匀速前进到为止,在这个过程中,的面积随时间的变化关系用图象表示正确的是( )
    A.B.C.D.
    2、(4分)下列各式中,与是同类二次根式的是( )
    A.B.C.D.
    3、(4分)下列给出的四个点中,在直线的是( )
    A.B.C.D.
    4、(4分)如图,平行四边形ABCD中,若∠A=60°,则∠C的度数为( )
    A.120°B.60°C.30°D.15°
    5、(4分)有19位同学参加歌咏比赛,所得的分数互不相同,所得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学得分的( )
    A.平均数B.中位数C.众数D.总分
    6、(4分)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是( )
    A.y1>y2B.y1<y2C.y1=y2D.不能确定
    7、(4分)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()
    A.18B.28C.36D.46
    8、(4分)如图,在中,,是边上一条运动的线段(点不与点重合,点不与
    点重合),且,交于点,交于点,在从左至右的运动过
    程中,设BM=x,和的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致
    是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为__.
    10、(4分)如图,在边长为1的小正方形组成的网格中,点A,B都在格点上,则线段AB的长度为_________.
    11、(4分)若正比例函数的图象过点和点,当时,,则的取值范围为__________.
    12、(4分)甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:,则成绩较稳定的是_______(填“甲”或“乙”).
    13、(4分)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.
    (1)求证:四边形AECF是菱形;
    (2)若AC=4,BE=1,直接写出菱形AECF的边长.
    15、(8分)如图,在中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.
    (1)求证:AE=CF
    (2)若AB=9,AC=16,AE=4,BF=,求四边形ABCD的面积.
    16、(8分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
    (1)请画出平移后的△A′B′C′(不写画法);
    (2)并直接写出点B′、C′的坐标:B′( )、C′( );
    (3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是( ).
    17、(10分)解不等式组:,把它的解集在数轴上表示出来,并写出其整数解.
    18、(10分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
    (1)求证:四边形AMDN是平行四边形;
    (2)填空:①当AM的值为 时,四边形AMDN是矩形;②当AM的值为 时,四边形AMDN是菱形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在矩形中,对角线,交于点,要使矩形成为正方形,应添加的一个条件是______.
    20、(4分)两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_____.
    21、(4分)某校对初一全体学生进行一次视力普查,得到如下统计表,视力在这个范围的频率为__________.
    22、(4分)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小.
    23、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,中,.
    (1)请用尺规作图的方法在边上确定点,使得点到边的距离等于的长;(保留作用痕迹,不写作法)
    (2)在(1)的条件下,求证:.
    25、(10分)为贯彻落实关于“传承和弘扬中华优秀传统文化”的重要讲话精神,2018年5月27日我市举办了第二届湖南省青少年国学大赛永州复赛.本次比赛全市共有近200所学校4.6万名学生参加.经各校推荐报名、县区初赛选拔、市区淘汰赛的层层选拔,推选出优秀的学生参加全省的总决赛.下面是某县初赛时选手成绩的统计图表(部分信息未给出).
    请根据图表信息回答下列问题:
    (1)在频数分布表中, , .
    (2)请将频数直方图补充完整;
    (3)若测试成绩不低于120分为优秀,则本次测试的优秀率是多少?
    26、(12分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
    (1)求证:△BDE∽△BAC;
    (2)已知AC=6,BC=8,求线段AD的长度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据点的运动过程可知:的底边为,而且始终不变,点到直线的距离为的高,根据高的变化即可判断与的函数图象.
    【详解】
    解:设点到直线的距离为,
    的面积为:,
    当在线段运动时,
    此时不断增大,也不端增大
    当在线段上运动时,
    此时不变,也不变,
    当在线段上运动时,
    此时不断减小,不断减少,
    又因为匀速行驶且,所以在线段上运动的时间大于在线段上运动的时间
    故选.
    本题考查函数图象,解题的关键是根据点到直线的距离来判断与的关系,本题属于基础题型.
    2、B
    【解析】
    先化简二次根式,再根据同类二次根式的定义判定即可.
    【详解】
    解:A、与的被开方数不同,不是同类二次根式,故本选项错误.
    B、=2,与的被开方数相同,是同类二次根式,故本选项正确.
    C、与的被开方数不同,不是同类二次根式,故本选项错误.
    D、=3 ,与的被开方数不同,不是同类二次根式,故本选项错误.
    故选:B.
    本题考查同类二次根式,解题的关键是二次根式的化简.
    3、D
    【解析】
    只需把每个点的横坐标即x的值分别代入,计算出对应的y值,然后与对应的纵坐标比较即可.
    【详解】
    解:A、当时,,则不在直线上;
    B、当时,,则不在直线上;
    C、当时,,则不在直线上;
    D、当时,,则在直线上;
    故选:D.
    本题考查判断点是否在直线上,知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.
    4、B
    【解析】
    直接利用平行四边形的对角相等即可得出答案.
    【详解】
    ∵四边形ABCD是平行四边形
    ∴∠C=∠A=60°
    故选:B.
    此题主要考查了平行四边形的性质,熟记平行四边形的对角性质是解题关键.
    5、B
    【解析】
    因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.
    【详解】
    解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,
    因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以,
    故选:B.
    本题考查了统计量的选择,掌握各个统计量的特点是解题关键.
    6、B
    【解析】
    试题分析:先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣1的大小,根据函数的增减性进行解答即可.
    解:∵直线y=﹣1x+3中,k=﹣1<0,
    ∴此函数中y随x的增大而减小,
    ∵3>﹣1,
    ∴y1<y1.
    故选B.
    考点:一次函数图象上点的坐标特征.
    7、C
    【解析】
    ∵四边形ABCD是平行四边形,∴AB=CD=5.
    ∵△OCD的周长为23,∴OD+OC=23﹣5=18.
    ∵BD=2DO,AC=2OC,
    ∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36.
    故选C.
    8、B
    【解析】
    【分析】不妨设BC=2a,∠B=∠C=α,BM=x,则CN=a-x,根据二次函数即可解决问题.
    【详解】不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a−x,
    则有S阴=y=⋅x⋅xtanα+ (a−x)⋅(a−x)tanα
    =tanα(m2+a2−2ax+x2)
    =tanα(2x2−2ax+a2)
    ∴S阴的值先变小后变大,
    故选:B
    【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    由基本作图得到,平分,故可得出四边形是菱形,由菱形的性质可知,故可得出的长,再由勾股定理即可得出的长,进而得出结论.
    【详解】
    解:连结,与交于点,
    四边形是平行四边形,,
    四边形是菱形,
    ,,.

    在中,,

    故答案为:1.
    本题考查的是作图基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.
    10、
    【解析】
    建立格点三角形,利用勾股定理求解AB的长度即可.
    【详解】
    如图所示,作出直角三角形ABC,小方格的边长为1,
    ∴由勾股定理得.
    考查了格点中的直角三角形的构造和勾股定理的应用,熟记勾股定理内容是解题关键.
    11、
    【解析】
    根据点A和点B的坐标关系即可求出正比例函数的增减性,然后根据增减性与比例系数的关系列出不等式,即可求出m的取值范围.
    【详解】
    解:∵正比例函数的图象过点和点,且时,,
    ∴该正比例函数y随x的增大而减小

    解得:
    故答案为:
    此题考查的是正比例函数的增减性,掌握正比例函数的增减性与比例系数的关系是解决此题的关键.
    12、乙.
    【解析】
    方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
    【详解】
    解:∵S甲2=1.61>S乙2=1.51,∴成绩较稳定的是是乙.
    本题考查方差的意义.方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
    13、-1
    【解析】
    试题分析:由于点A是反比例函数y=上一点,矩形ABOC的面积S=|k|=1,则k的值为-1.
    考点:反比例函数
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)
    【解析】
    (1)根据正方形的性质和菱形的判定解答即可;
    (2)根据正方形和菱形的性质以及勾股定理解答即可.
    【详解】
    (1)证明:∵正方形ABCD的对角线AC,BD相交于点O,
    ∴OA=OC,OB=OD,
    AC⊥BD.
    ∵BE=DF,
    ∴OB+BE=OD+DF,即OE=OF.
    ∴四边形AECF是平行四边形.
    ∵AC⊥EF,
    ∴四边形AECF是菱形.
    (2)∵AC=4,
    ∴OA=2,
    ∴OB=2,
    ∴OE=OB+BE=3,
    ∴AE= (勾股定理)
    此题考查了菱形的性质和判定,解题时要注意选择适宜的判定方法.
    15、(1)见解析;(2)
    【解析】
    (1)首先由平行四边形的性质可得AB=CD,AB∥CD,再根据平行线的性质可得∠BAE=∠DCF,∠BEC=∠DFA,然后根据AAS定理判定△ABE≌△CDF,即可证明得到AE=CF;
    (2)通过作辅助线求出△ABC的面积,即可得到四边形ABCD的面积.
    【详解】
    解:(1)证明:∵在平行四边形ABCD中,AB=CD,AB∥CD,
    ∴∠BAC=∠DCA,
    又∵BE∥DF,
    ∴∠BEF=∠DFE,
    ∴∠BEA=∠DFC,
    ∴在△ABE和△CDF中,

    ∴△ABE≌△CDF,
    ∴AE=CF;
    (2)连接BD交AC于点O,作BH⊥AC交AC于点H
    ∵在平行四边形ABCD中,AC、BD是对角线,
    ∴AO=CO=8,AF=12,
    ∵AB2+BF2=92+=144,AF2=144,
    ∴AB2+BF2=AF2,
    ∴∠ABF=90°,
    ∴BH===,
    ∴S平行四边形ABCD=2S△ABC==.
    此题主要考查了平行四边形的性质,全等三角形的判定与性质,以及利用面积法求三角形的高等知识,难度一般.
    16、(1)答案见解析;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)(a﹣5,b﹣2).
    【解析】
    (1)根据网格结构找出点B、C平移后的位置,然后顺次连接即可;
    (2)根据平面直角坐标系写出点B′、C′的坐标即可;
    (3)根据平移规律写出即可.
    【详解】
    解:(1)△A′B′C′如图所示;
    (2)B′(﹣4,1)、C′(﹣1,﹣1);
    (3)∵点A(3,4)、A′(﹣2,2),
    ∴平移规律为向左平移5个单位,向下平移2个单位,
    ∴P(a,b)平移后的对应点P′的坐标是(a﹣5,b﹣2).
    故答案为B′(﹣4,1)、C′(﹣1,﹣1);(a﹣5,b﹣2).
    本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    17、,x的整数解为﹣1,﹣1,0,1,1.
    【解析】
    先对不等式组中的两个不等式进行分别求解,求得解集,再将解集表示在数轴上.
    【详解】
    解:
    解不等式①,,
    解不等式②,,
    ∴,
    解集在数轴上表示如下:
    ∴x的整数解为﹣1,﹣1,0,1,1.
    本题考查不等式组和数轴,解题的关键是熟练掌握不等式组的求解和有理数在数轴上的表示.
    18、(1)见解析(2)①1;②2
    【解析】
    试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;
    (2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;
    ②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
    试题解析:(1)证明:∵四边形ABCD是菱形,
    ∴ND∥AM,
    ∴∠NDE=∠MAE,∠DNE=∠AME,
    又∵点E是AD边的中点,
    ∴DE=AE,
    ∴△NDE≌△MAE,
    ∴ND=MA,
    ∴四边形AMDN是平行四边形;
    (2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:
    ∵AM=1=AD,
    ∴∠ADM=30°
    ∵∠DAM=60°,
    ∴∠AMD=90°,
    ∴平行四边形AMDN是矩形;
    ②当AM的值为2时,四边形AMDN是菱形.理由如下:
    ∵AM=2,
    ∴AM=AD=2,
    ∴△AMD是等边三角形,
    ∴AM=DM,
    ∴平行四边形AMDN是菱形,
    考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(答案不唯一)
    【解析】
    根据正方形的判定添加条件即可.
    【详解】
    解:添加的条件可以是AB=BC.
    理由如下:
    ∵四边形ABCD是矩形,AB=BC,
    ∴四边形ABCD是正方形.
    故答案为:AB=BC(答案不唯一).
    本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
    20、1
    【解析】
    试题解析:∵PC⊥x轴,PD⊥y轴,
    ∴S矩形PCOD=2,S△AOC=S△BOD=,
    ∴四边形PAOB的面积=S矩形PCOD-S△AOC-S△BOD=2--=1.
    21、0.1
    【解析】
    【分析】先求出视力在4.9≤x

    相关试卷

    江苏省南通市海安市八校联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】:

    这是一份江苏省南通市海安市八校联考2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届云南省丽江市名校九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2025届云南省丽江市名校九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年云南省昆明市石林县九上数学开学统考模拟试题【含答案】:

    这是一份2024-2025学年云南省昆明市石林县九上数学开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map