


四川省成都市嘉祥外国语学校2024年九年级数学第一学期开学达标测试试题【含答案】
展开
这是一份四川省成都市嘉祥外国语学校2024年九年级数学第一学期开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,y随x的增大而减小的函数是( )
A.B.C.D.
2、(4分)下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有( )
A.1个B.2个C.3个D.4个
3、(4分)有一组数据7、11、12、7、7、8、11,下列说法错误的是( )
A.中位数是7B.平均数是9C.众数是7D.极差为5
4、(4分)在中,若是的正比例函数,则值为
A.1B.C.D.无法确定
5、(4分)如图,一根木棍斜靠在与地面OM垂直的墙面ON上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到墙角点O的距离( )
A.不变B.变小C.变大D.先变大后变小
6、(4分)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是( )
A.这50名学生是总体的一个样本
B.每位学生的体考成绩是个体
C.50名学生是样本容量
D.650名学生是总体
7、(4分)长春市某服装店销售夏季T恤衫,试销期间对4种款式T恤衫的销售量统计如下表:
该店老板如果想要了解哪种款式的销售量最大,那么他应关注的统计量是( )
A.平均数 B.众数C.中位数D.方差
8、(4分)甲、乙是两个不透明的纸箱,甲中有三张标有数字,,的卡片,乙中有三张标有数字,,的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为,从乙中任取一张卡片,将其数字记为.若,能使关于的一元二次方程有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为______米.
10、(4分)在平面直角坐标系中,已知坐标,将线段(第一象限)绕点(坐标原点)按逆时针方向旋转后,得到线段,则点的坐标为____.
11、(4分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.
12、(4分)点P在第四象限内,P到轴的距离是3,到轴的距离是5,那么点P的坐标为 .
13、(4分)分解因式:____________
三、解答题(本大题共5个小题,共48分)
14、(12分)在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?
15、(8分)某人购进一批琼中绿橙到市场上零售,已知卖出的绿橙数量x(千克)与售价y(元)的关系如下表:
(1)写出售价y(元)与绿橙数量x(千克)之间的函数关系式;
(2)这个人若卖出50千克的绿橙,售价为多少元?
16、(8分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.
17、(10分)如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.
(1)求证:CE为⊙O的切线;
(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)
18、(10分)一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.
(1)该水果店主购进第一批这种水果的单价是多少元?
(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离 ▲ km.
20、(4分)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.
21、(4分)若某组数据的方差计算公式是S2=[(7-)+(4-)2+(3-)2+(6-)2],则公式中=______.
22、(4分)在平面直角坐标系中,将点绕点旋转,得到的对应点的坐标是__________.
23、(4分)已知关于x的方程x2-2ax+1=0有两个相等的实数根,则a=____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD.BC上,且DE=BP=1.连接BE,EC,AP,DP,PD与CE交于点F,AP与BE交于点H.
(1)判断△BEC的形状,并说明理由;
(2)判断四边形EFPH是什么特殊四边形,并证明你的判断;
(3)求四边形EFPH的面积.
25、(10分)已知:直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P.
(1)求该定点P的坐标;
(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;
(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.
26、(12分)今年水果大丰收,A,B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.
(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;
(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.
【详解】
解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,
C选项中,k=<0,y随x的增大而减少.
故选:C.
本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
2、D
【解析】
分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.
【详解】
解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;
平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;
平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题;
平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题。
故选:D
本题考查的是命题的真假判断和逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
3、A
【解析】
根据中位数.平均数.极差.众数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:,
则中位数为8,平均数为,众数为7,极差为,
故选A.
本题考查了加权平均数,中位数,众数,极差,熟练掌握概念是解题的关键.
4、A
【解析】
先根据正比例函数的定义列出关于的方程组,求出的值即可.
【详解】
函数是正比例函数,
,
解得,
故选.
本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.
5、A
【解析】
连接OP,易知OP就是斜边AB上的中线,由于直角三角形斜边上的中线等于斜边的一半,那么OPAB,由于AB不变,那么OP也就不变.
【详解】
不变.连接OP.在Rt△AOB中,OP是斜边AB上的中线,那么OPAB,由于木棍的长度不变,所以不管木棍如何滑动,OP都是一个定值.
故选A.
本题考查了直角三角形斜边上的中线,解题的关键是知道木棍AB的长度不变,也就是斜边不变.
6、B
【解析】
因为这50名学生的体考成绩是总体的一个样本,所以选项A错误;
因为每位学生的体考成绩是个体,所以选项B正确;
因为50是样本容量,样本容量是个数字,没有单位,所以选项C错误;
因为这650名学生的体考成绩是总体,所以选项D错误.
故选B.
7、B
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对4种款式T恤衫的销售量情况作调查,所以应该关注销量的最多,故值得关注的是众数.
【详解】
由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
故选B.
本题考查了统计的有关知识,熟知平均数、中位数、众数、方差的意义是解决问题的关键.
8、C
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.
【详解】
(1)画树状图如下:
由图可知,共有种等可能的结果,其中能使乙获胜的有种结果数,
乙获胜的概率为,
故选C.
本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1×10-1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:=1×10-1.
故答案为:1×10-1.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
10、
【解析】
根据旋转的性质求出点的坐标即可.
【详解】
如图,将点B绕点(坐标原点)按逆时针方向旋转后,得到点
点的坐标为
故答案为:.
本题考查了坐标点的旋转问题,掌握旋转的性质是解题的关键.
11、
【解析】
作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.
【详解】
解:作AM⊥BC于E,如图所示:
∵CD平分∠ACB,
∴,
设AC=2x,则BC=3x,
∵MN是BC的垂直平分线,
∴MN⊥BC,BN=CN=x,
∴MN∥AE,
∴,
∴NE=x,
∴BE=BN+EN=x,CE=CN−EN=x,
由勾股定理得:AE2=AB2−BE2=AC2−CE2,
即52−(x)2=(2x)2−(x)2,
解得:x=,
∴AC=2x=;
故答案为.
本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.
12、(5,-1).
【解析】
试题分析:已知点P在第四象限,可得点P的横、纵坐标分别为正数、负数,又因为点P到x轴的距离为1,到y轴的距离为5,所以点P的横坐标为5或-5,纵坐标为1或-1.所以点P的坐标为(5,-1).
考点:各象限内点的坐标的特征.
13、a(x+5)(x-5)
【解析】
先公因式a,然后再利用平方差公式进行分解即可.
【详解】
故答案为a(x+5)(x-5).
三、解答题(本大题共5个小题,共48分)
14、(1)甲、乙两队单独完成这取工程各需60,90天;(2)甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.
【解析】
(1)根据题意列方程求解;
(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率得到乙队的施工天数,令施工总费用为w万元,求出w与m的函数解析式,根据m的取值范围以及一次函数的性质求解即可.
【详解】
(1)设甲、乙两队单独完成这取工程各需2x,3x天,
由题意得:,
解得:,
经检验:是原方程的根,
∴,,
答:甲、乙两队单独完成这取工程各需60,90天;
(2)由题意得:,
令施工总费用为w万元,则.
∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,
∴,,
∴,
∴当时,完成此项工程总费用最少,此时,元,
答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.
本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.
15、 (1)y=2.1x;(2)这个人若卖出50千克的绿橙,售价为1元.
【解析】
(1)根据表中所给信息,判断出y与x的数量关系,列出函数关系式即可;
(2)把x=50代入函数关系式即可.
【详解】
(1)设售价为y(元)与绿橙数量x(千克)之间的函数关系式为y=kx+b,由已知得,
,
解得k=2.1,b=0;
∴y与x之间的函数关系式为y=2.1x;
(2)当x=50时,
y=2.1×50=1.
答:这个人若卖出50千克的绿橙,售价为1元.
本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.
16、详见解析
【解析】
由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.
【详解】
证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠1=∠EAF,
∵∠1=∠1,
∴∠EAF=∠1,
∴AE∥CF,
∴四边形AECF是平行四边形.
本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.
17、(1)见解析;(2).
【解析】
(1)首先连接OE,由AC⊥AB,,可得∠CAD=90°,又由AC=EC,OA=OE,易证得∠CAE=∠CEA, ∠FAO=∠FEO,即可证得CD为⊙O的切线;
(2)根据题意可知∠OAF=30°,OF=1,可求得AE的长,又由S阴影= -,即可求得答案.
【详解】
(1)证明:连接OE
∵AC=EC,OA=OE
∴∠CAE=∠CEA, ∠FAO=∠FEO
∵AC⊥AB,
∴∠CAD=90°
∴∠CAE+∠EAO=90°
∴∠CEA+∠AEO=90°
即∠CEA=90°
∴OE⊥CD
∴CE为⊙O的切线
(2)解:
∵∠OAF=30°,OF=1
∴AO=2
∴AF= 即AE=
∴
∵∠AOE= 120°,AO=2
∴
∴S阴影=
此题考查垂径定理及其推论,切线的判定与性质,扇形面积的计算,解题关键在于作辅助线.
18、(1)水果店主购进第一批这种水果的单价是20元;(2)a的最大值是1.
【解析】
(1)根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验;
(2)根据题意可以得到关于a的不等式,从而可以求得a的最大值.
【详解】
(1)设第一批水果的单价是x元,
,
解得,x=20,
经检验,x=20是原分式方程的解,
答:水果店主购进第一批这种水果的单价是20元;
(2)由题意可得,
,
解得,a≤1,
答:a的最大值是1.
本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,利用分式方程和不等式的性质解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、15
【解析】
解:设两地的实际距离为xcm,
根据题意得:,
解得:x=1500000,
∵1500000cm=15km,
∴两地的实际距离15km.
20、2
【解析】
先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.
【详解】
因为,△ABC中,∠C=90°,∠A=30°,
所以, ,
因为,DE是中位线,
所以,.
故答案为2
本题考核知识点:直角三角形,三角形中位线. 解题关键点:熟记直角三角形性质,三角形中位线性质.
21、1.
【解析】
根据代表的是平均数,利用平均数的公式即可得出答案.
【详解】
由题意,可得.
故答案为:1.
本题主要考查平均数,掌握平均数的公式是解题的关键.
22、
【解析】
根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.
【详解】
解:在平面直角坐标系xOy中,将点N(-1,-2)绕点O旋转180°,得到的对应点的坐标是(1,2),
故答案为:(1,2)
本题考查坐标与图形变化-旋转,解答本题的关键是明确题意,熟知坐标变化规律.
23、
【解析】
根据方程的系数结合根的判别式△=0,可得出关于a的一元二次方程,解之即可得出结论.
【详解】
解:∵关于x的方程x2-2ax+1=0有两个相等的实数根,
∴△=(-2a)2-4×1×1=0,
解得:a=±1.
故答案为:±1.
本题考查了根的判别式,牢记“当△=0时,方程有两个相等的两个实数根”是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)△BEC为直角三角形,理由见解析;(2)四边形EFPH是矩形,理由见解析;(3)
【解析】
(1)根据矩形的性质可得∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5,然后利用勾股定理即可求出BE和CE,然后根据勾股定理的逆定理即可证出△BEC为直角三角形;
(2)根据矩形的性质可得AD∥BC, AD=BC=5,然后根据平行四边形的判定定理可得四边形EBPD和四边形APCE均为平行四边形,从而证出四边形EFPH是平行四边形,然后根据矩形的定义即可得出结论;
(3)先利用三角形面积的两种求法,即可求出BH,从而求出HE,然后根据勾股定理即可求出HP,然后根据矩形的面积公式计算即可.
【详解】
解:(1)△BEC为直角三角形,理由如下
∵四边形ABCD为矩形
∴∠BAE=∠CDE=90°,AB=CD=2,AD=BC=5
∵DE=1
∴AE=AD-DE=4
在Rt△ABE中,BE=
在Rt△CDE中CE=
∴BE2+CE2=25= BC2
∴△BEC为直角三角形
(2)四边形EFPH是矩形,理由如下
∵四边形ABCD为矩形
∴AD∥BC, AD=BC=5
∵DE=BP=1,
∴AD-DE=BC-BP=4
即AE=CP=4
∴四边形EBPD和四边形APCE均为平行四边形
∴EB∥DP,AP∥EC
∴四边形EFPH是平行四边形
∵△BEC为直角三角形,∠BEC=90°
∴四边形EFPH是矩形
(3)∵四边形APCE为平行四边形,四边形EFPH是矩形
∴AP=CE=,∠EHP=90°
∴∠BHP=180°-∠EHP=90°
∵S△ABP=
∴
解得:
∴HE=BE-BH=
在Rt△BHP中,HP =
∴S矩形EFPH= HP·HE=
此题考查的是矩形的判定及性质、勾股定理和勾股定理的逆定理,掌握矩形的定义、矩形的性质、利用勾股定理解直角三角形和利用勾股定理的逆定理判定直角三角形是解决此题的关键.
25、(1)(2,3);(2);(3)﹣<k<0或0<k<
【解析】
(1)对题目中的函数解析式进行变形即可求得点P的坐标;
(2)根据题意可以得到相应的不等式组,从而可以求得k的取值范围;
(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得k的取值范围.
【详解】
解:(1)∵y=2kx﹣4k+3=2k(x﹣2)+3,
∴y=2kx﹣4k+3(k≠0)恒过某一定点P的坐标为(2,3),
即点P的坐标为(2,3);
(2)∵点A、B坐标分别为(0,1)、(2,1),直线l与线段AB相交,直线l:y=2kx﹣4k+3(k≠0)恒过某一定点P(2,3),
∴
解得,k;
(3)当k>0时,直线y=2kx﹣4k+3中,y随x的增大而增大,
∴当0≤x≤2时,﹣4k+3≤y≤3,
∵以y1、y2、y3为长度的3条线段能围成三角形,
∴,得k<,
∴0<k<;
当k<0时,直线y=2kx﹣4k+3中,y随x的增大而减小,
∴当0≤x≤2时,3≤y≤﹣4k+3,
∵以y1、y2、y3为长度的3条线段能围成三角形,
∴3+3>﹣4k+3,得k>﹣,
∴﹣<k<0,
由上可得,﹣<k<0或0<k<.
故答案为(1)(2,3);(2);(3)﹣<k<0或0<k<
本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.
26、(1)W=35x+11200,x的取值范围是80≤x≤380;(2)从A基地运往甲销售点的水果200件,运往乙销售点的水果180件,从B基地运往甲销售点的水果200件,运往乙销售点的水果120件.
【解析】
试题分析:(1)用x表示出从A基地运往乙销售点的水果件数,从B基地运往甲、乙两个销售点的水果件数,然后根据运费=单价×数量列式整理即可得解,再根据运输水果的数量不小于0列出不等式求解得到x的取值范围;(2)根据一次函数的增减性确定出运费最低时的运输方案,然后求解即可.
试题解析:
(1)依题意,列表得
∴W=40x+20×(380-x)+15×(400-x)+30×(x-80)=35x+11200
又解得80≤x≤380
(2) 依题意得解得,∴x=200,201,202
因w=35x+10,k=35,w随x的增大而增大,所以x=200时,运费w最低,最低运费为81200元。
此时运输方案如下:
考点:1、一次函数的应用;2、一元一次不等式组的应用.
题号
一
二
三
四
五
总分
得分
款式
A
B
C
D
销售量/件
1
8
5
1
数量x(千克)
1
2
3
4
5
…
售价y(元)
2+0.1
4+0.2
6+0.3
8+0.4
10+0.5
…
A(380)
B(320)
甲(400)
x
400-x
乙(300)
380-x
320-(400-x)=x-80
A
B
甲
200
200
乙
180
120
相关试卷
这是一份四川省成都市成都外国语学校2025届数学九年级第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省成都嘉祥外国语学校2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省长春外国语学校2025届数学九年级第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。