


2025届浙江省义乌市稠州中学九上数学开学检测模拟试题【含答案】
展开
这是一份2025届浙江省义乌市稠州中学九上数学开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE∥BC交AB于点E,若△AED的周长为16,则边AB的长为( )
A.6B.8C.10D.12
2、(4分)如图,矩形中,对角线、交于点.若,,则的长为( )
A.6B.5C.4D.3
3、(4分)①;②;③;④;⑤,一定是一次函数的个数有( )
A.个B.个C.个D.个
4、(4分)若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为( )
A.m=-6,n=-4B.m=O,n=-4
C.m=6,n=4D.m=6,n=-4
5、(4分)用反证法证明命题“四边形中至少有一个角不小于直角”时应假设( )
A.没有一个角大于直角 B.至多有一个角不小于直角
C.每一个内角都为锐角 D.至少有一个角大于直角
6、(4分)若一个三角形三个内角度数的比为,且最大的边长为,那么最小的边长为( )
A.1B.C.2D.
7、(4分)已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为( )
A.12B.24C.36D.48
8、(4分)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=
A.40°B.50°
C.60°D.75°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.
10、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.
11、(4分)如图,中,对角线相交于点,,若要使平行四边形为矩形,则的长度是__________.
12、(4分)李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.
13、(4分)聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标。
15、(8分)某校“六一”活动购买了一批A,B两种型号跳绳,其中A型号跳绳的单价比B型号跳绳的单价少9元,已知该校用2600元购买A型号跳绳的条数与用3500元购买B型号跳绳的条数相等.
(1)求该校购买的A,B两种型号跳绳的单价各是多少元?
(2)若两种跳绳共购买了200条,且购买的总费用不超过6300元,求A型号跳绳至少购买多少条?
16、(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点F,,.
(1)求证:四边形DEAF是菱形;
(2)若,求的度数.
17、(10分) “金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.
(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);
(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.
18、(10分)某港口P位于东西方向的海岸线上.在港口P北偏东25°方向上有一座小岛A,且距离港口20海里;在港口与小岛的东部海域上有一座灯塔B,△PAB恰好是等腰直角三角形,其中∠B是直角;
(1)在图中补全图形,画出灯塔B的位置;(保留作图痕迹)
(2)一艘货船C从港口P出发,以每小时15海里的速度,沿北偏西20°的方向航行,请求出1小时后该货船C与灯塔B的距离.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出
①AB=__________;
②CD=_______________(提示:过A作CD的垂线);
③BC=_______________.
20、(4分)如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为 cm.
21、(4分)已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.
22、(4分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。
23、(4分)在平面直角坐标系中,将点绕点旋转,得到的对应点的坐标是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系xOy中,对于两点A,B,给出如下定义:以线段AB为边的正方形称为点A,B的“确定正方形”.如图为点A,B 的“确定正方形”的示意图.
(1)如果点M的坐标为(0,1),点N的坐标为(3,1),那么点M,N的“确定正方形”的面积为___________;
(2)已知点O的坐标为(0,0),点C为直线上一动点,当点O,C的“确定正方形”的面积最小,且最小面积为2时,求b的值.
(3)已知点E在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P(m,0),点F在直线上,若要使所有点E,F的“确定正方形”的面积都不小于2,直接写出m的取值范围.
25、(10分)如图,已知一条直线经过点A(0,2),点B(1,0),将这条直线向左平移与x轴y轴分别交于点C、点D.若DB=DC,求直线CD对应的函数解析式.
26、(12分)如图,在 ABC ,C 90,AC<BC,D 为 BC 上一点,且到 A、B 两点的距离相等.
(1)用直尺和圆规,作出点 D 的位置(不写作法,保留作图痕迹);
(2)连结 AD,若 B 36 ,求∠CAD 的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据角平分线的定义得到∠EBD=∠CBD,根据平行线的性质得到∠EDB=∠CBD,等量代换得到∠EBD=∠EDB,求得BE=DE,于是得到结论.
【详解】
解:∵BD平分∠ABC,
∴∠EBD=∠CBD,
∵DE∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴BE=DE,
∵△AED的周长为16,
∴AB+AD=16,
∵AD=6,
∴AB=10,
故选:C.
本题考查了平行线的性质,角平分线的性质,等腰三角形的判定和性质,熟练掌握各定理是解题的关键.
2、B
【解析】
由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OC=OB=OD=AC=1,∠ABC=90°,
∴∠OBC=∠ACB=30°
∵∠AOB=∠OBC+∠ACB
∴∠AOB=60°
∵OA=OB
∴△AOB是等边三角形
∴AB=OA=1
故选:B
本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.
3、A
【解析】
根据一次函数的定义条件解答即可.
【详解】
解:①y=kx,当k=0时原式不是函数;
②,是一次函数;
③由于,则不是一次函数;
④y=x2+1自变量次数不为1,故不是一次函数;
⑤y=22-x是一次函数.
故选A.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
4、B
【解析】
试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.
考点:原点对称
5、C
【解析】
至少有一个角不小于90°的反面是每个内角都为锐角,据此即可假设.
【详解】
解:反证法的第一步先假设结论不成立,即四边形的每个内角都为锐角.
故选C.
本题结合角的比较考查反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
6、B
【解析】
先求出三角形是直角三角形,再根据含30°角的直角三角形的性质得出即可.
【详解】
∵三角形三个内角度数的比为1:2:3,三角形的内角和等于180°,
∴此三角形的三个角的度数是30°,60°,90°,
即此三角形是直角三角形,
∵三角形的最大的边长为2,
∴三角形的最小的边长为×2=,
故选B.
本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能求出三角形是直角三角形是解此题的关键.
7、B
【解析】
首先根据题意画出图形,由一个菱形的边长为5,其中一条对角线长为8,可利用勾股定理,求得另一菱形的对角线长,继而求得答案.
【详解】
解:如图,
∵菱形ABCD中,BD=8,AB=5,
∴AC⊥BD,OB=BD=4,
∴OA==3,
∴AC=2OA=6,
∴这个菱形的面积为:AC•BD=×6×8=1.
故选B.
此题考查了菱形的性质以及勾股定理.注意菱形的面积等于其对角线积的一半.
8、B
【解析】
分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.
详解:∵∠B=∠D=90°
在Rt△ABC和Rt△ADC中
,
∴Rt△ABC≌Rt△ADC(HL)
∴∠2=∠ACB=90°-∠1=50°.
故选B.
点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<2.
【解析】
根据不等式与函数的关系由图像直接得出即可.
【详解】
由图可得关于的不等式的解集为x<2.
故填:x<2.
此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.
10、1
【解析】
作PD⊥BC于D,PE⊥AC于E,如图,AP=t,BQ=tcm,(0≤t<6)
∵∠C=90°,AC=BC=6cm,
∴△ABC为直角三角形,
∴∠A=∠B=45°,
∴△APE和△PBD为等腰直角三角形,
∴PE=AE=AP=tcm,BD=PD,
∴CE=AC﹣AE=(6﹣t)cm,
∵四边形PECD为矩形,
∴PD=EC=(6﹣t)cm,
∴BD=(6﹣t)cm,
∴QD=BD﹣BQ=(6﹣1t)cm,
在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,
在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,
∵四边形QPCP′为菱形,
∴PQ=PC,
∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,
∴t1=1,t1=6(舍去),
∴t的值为1.
故答案为1.
【点睛】
此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 .
11、
【解析】
根据矩形的性质得到OA=OC=OB=OD,可得出结果.
【详解】
解:假如平行四边形ABCD是矩形,
∴OA=OC=OB=OD,
∵OA=3,
∴BD=2OB=1.
故答案为:1.
本题主要考查了矩形的性质,平行四边形的性质等知识点的理解和掌握.
12、7.9
【解析】
分析:根据平均数的定义进行求解即可得.
详解:由题意得:
故答案为
点睛:本题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.
13、.
【解析】
首先正确数出所有的数字个数和9出现的个数;再根据频率=频数÷总数,进行计算.
解:根据题意,知在数据中,共33个数字,其中11个9;
故数字9出现的频率是.
三、解答题(本大题共5个小题,共48分)
14、(1)A(4,0)、B(0,2)
(2)当0
相关试卷
这是一份2024年浙江省义乌市稠州中学九上数学开学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省义乌市稠州中学2022-2023学年数学九上期末教学质量检测试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,二次函数的顶点坐标是等内容,欢迎下载使用。
这是一份浙江省金华市义乌市稠州中学2023-2024学年九年级下学期开学考试数学试题,共4页。试卷主要包含了﹣2024的绝对值是,下列计算正确的是,换元法是一种重要的转化方法,如等内容,欢迎下载使用。