2025届江苏扬州市仪征市九上数学开学教学质量检测模拟试题【含答案】
展开这是一份2025届江苏扬州市仪征市九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是( )
A.众数是80B.中位数是75C.平均数是80D.极差是15
2、(4分)能判定四边形是平行四边形的条件是( )
A.一组对边平行,另一组对边相等
B.一组对边相等,一组邻角相等
C.一组对边平行,一组邻角相等
D.一组对边平行,一组对角相等
3、(4分)图中两直线L1,L2的交点坐标可以看作方程组( )的解.
A.B.C.D.
4、(4分)在四边形中,,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是( )
A.B.C.D.
5、(4分)如图,点P是□ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )
A.B.C.D.
6、(4分)下列命题是真命题的是( )
A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)
B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等
C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等
D.平行四边形的对角线相等
7、(4分)如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为( )
A.10B.13C.8D.11
8、(4分)直线与轴、轴的交点坐标分别是( )
A.,B.,C.,D.,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一元二次方程(为常数)有两个相等的实数根,则______.
10、(4分)若,是一元二次方程的两个根,则______.
11、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步先假设所求证的结论不成立,即问题表述为______.
12、(4分)方程的解为_________.
13、(4分)已知菱形ABCD的对角线AC=10,BD=24,则菱形ABCD的面积为__________。
三、解答题(本大题共5个小题,共48分)
14、(12分)某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了元.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?
15、(8分)如图,在四边形中,,,E为对角线的中点,F为边的中点,连接.
(1)求证:四边形为菱形;
(2)连接交于点G,若,,求的长.
16、(8分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.
17、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴上,C在x轴上,把矩形OABC沿对角线AC所在的直线翻折,点B恰好落在反比例函数的图象上的点处,与y轴交于点D,已知,.
求的度数;
求反比例函数的函数表达式;
若Q是反比例函数图象上的一点,在坐标轴上是否存在点P,使以P,Q,C,D为顶点的四边形是平行四边形?若存在,请求出P点的坐标;若不存在,请说明理由.
18、(10分)如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).
(1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;
(2)若点A的坐标为(5,0),求直线AB的解析式;
(3)在(2)的条件下,求四边形BODC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个有进水管与出水管的容器,从某时刻开始的4分内只进水不出水,在随后的若干分内既进水又出水,之后只有出水不进水,每分钟的进水量和出水量是两个常数,容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示,则进水速度是______升/分,出水速度是______升/分,的值为______.
20、(4分)若a≠b,且a2﹣a=b2﹣b,则a+b=__.
21、(4分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为_____.
22、(4分)已知函数 的图像经过点A(1,m)和点B(2,n),则m___n(填“>”“<”或“=”).
23、(4分)直线沿轴平移3个单位,则平移后直线与轴的交点坐标为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1)写出条形图中存在的错误,并说明理由;
(2)写出这20名学生每人植树量的众数、中位数;
(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:
① 小宇的分析是从哪一步开始出现错误的?
② 请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.
25、(10分)计算:
(1) (2)
26、(12分)的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:,且.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
(1)80出现的次数最多,所以众数是80,A正确;
(2)把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;
(3)平均数是80,C正确;
(4)极差是90-75=15,D正确.故选B
2、D
【解析】
根据平行四边形的判定定理进行推导即可.
【详解】
解:如图所示:
若已知一组对边平行,一组对角相等,
易推导出另一组对边也平行,
两组对边分别平行的四边形是平行四边形.
故根据平行四边形的判定,只有D符合条件.
故选D.
考点:本题考查的是平行四边形的判定
点评:解答本题的关键是熟练掌握平行四边形的判定定理:
①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形.
3、B
【解析】
分析:
根据图中信息分别求出直线l1和l2的解析式即可作出判断.
详解:
设直线l1和l2的解析式分别为,根据图中信息可得:
, ,
解得: ,,
∴l1和l2的解析式分别为,即,,
∴直线l1和l2的交点坐标可以看作方程 的交点坐标.
故选B.
点睛:根据图象中的信息由待定系数法求得直线l1和l2的解析式是解答本题的关键.
4、A
【解析】
由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.
【详解】
∵四边形ABCD中,∠A=∠B=∠C=90°,
∴四边形ABCD是矩形,
当一组邻边相等时,矩形ABCD为正方形,
这个条件可以是:.
故选A.
此题考查正方形的判定,解题关键在于掌握判定定理.
5、A
【解析】
点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选A.
6、C
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:A、将点A(-2,3)向上平移3个单位后得到的点的坐标为(-2,6),是假命题;B、三角形的三条角平分线的交点到三角形的三条边的距离相等,是假命题;C、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,是真命题;D、平行四边形的对角线互相平分,是假命题;故选:C.
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.
7、B
【解析】
试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.
在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B
考点:勾股定理.
8、A
【解析】
分别根据点在坐标轴上坐标的特点求出对应的x、y的值,即可求出直线y=2x-3与x轴、y轴的交点坐标.
【详解】
解:令y=0,则2x-3=0,
解得x=,
故此直线与x轴的交点的坐标为(,0);
令x=0,则y=-3,
故此直线与y轴的交点的坐标为(0,-3);
故选:A.
本题考查的是坐标轴上点的坐标特点,一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、±2
【解析】
根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.
【详解】
∵方程有两个相等的实数根,
∴△=b−4×1=b−4=0,
解得:b=±2.
故答案为:±2
此题考查根的判别式,解题关键在于掌握判别式
10、3
【解析】
利用根与系数的关系可得两根之和与两根之积,再整体代入通分后的式子计算即可.
【详解】
解:∵,是一元二次方程的两个根,∴,
∴.
故答案为:3.
本题考查的是一元二次方程根与系数的关系,熟练掌握基本知识是解题的关键.
11、假设在直角三角形中,两个锐角都大于45°.
【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.
【详解】
∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.
此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤. 反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.
12、
【解析】
此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.
【详解】
∵
∴
∴
∴
∴
故答案为:.
此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.
13、120
【解析】
根据菱形的面积等于对角线积的一半,即可求得答案.
【详解】
解:菱形ABCD的面积
此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.
三、解答题(本大题共5个小题,共48分)
14、商厦共盈利元.
【解析】
根据题意找出等量关系即第二批衬衫的单价-第一批衬衫的单价=4元,列出方程,可求得两批购进衬衫的数量;再设这笔生意盈利y元,可列方程为y+80000+176000=58(1+4000-150)+80%×58×150,可求出商厦的总盈利.
【详解】
设第一批购进x件衬衫,则第二批购进了2x件,
依题意可得:,
解得x=1.
经检验x=1是方程的解,
故第一批购进衬衫1件,第二批购进了4000件.
设这笔生意盈利y元,
可列方程为:y+80000+176000=58(1+4000-150)+80%×58×150,
解得y=2.
答:在这两笔生意中,商厦共盈利2元.
本题主要考查分式方程的应用,解题的关键是找出题中的等量关系.注意:求出的结果必须检验且还要看是否符合题意
15、(1)见解析;(2)
【解析】
由三角形中位线定理可得,,,可得,,由菱形的判定可得结论;
由菱形的性质可得,,,由勾股定理可得,可求,由勾股定理可求AD的长.
【详解】
(1)证明:∵分别为的中点,
∴,
∵,
∴,
∵,
∴,
∴四边形是平行四边形.
∵,
∴,
∴四边形是菱形.
(2)解:∵四边形是菱形,,
∴,,
在中,,可得.
∴,
∵E为中点,
∴.
∴.
在中,.
本题考查了菱形的性质,三角形中位线定理,勾股定理,熟练运用菱形的性质是本题的关键.
16、(1)购买甲种树苗500株,乙种树苗300株(2)320株(3)当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元
【解析】
(1)设购买甲种树苗株,乙种树苗株,列方程组求得
(2)设购买甲种树苗株,乙种树苗株,列不等式求解
(3)设甲种树苗购买株,购买树苗的费用为元,列出关系式,根据函数的性质求出w的最小值.
【详解】
(1)设购买甲种树苗株,乙种树苗株,得
解得
答:购买甲种树苗500株,乙种树苗300株.
(2)设购买甲种树苗株,乙种树苗株,得
解得
答:甲种树苗至少购买320株.
(3)设甲种树苗购买株,购买树苗的费用为元,
则
∵∴随增大而减小
所以当时,有最小值,最小=元
答:当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元.
17、(1).(2).(3)满足条件的点P坐标为,,,,.
【解析】
(1);
(2)求出B’的坐标即可;
(3)分五种情况,分别画出图形可解决问题.
【详解】
解:四边形ABCO是矩形,
,
,
.
如图1中,作轴于H.
,
,
,,,,
,
,
反比例函数的图象经过点,
,
.
如图2中,作轴交于,以DQ为边构造平行四边形可得,;
如图3中,作交于,以为边构造平行四边形可得,;
如图4中,当,以为边构造平行四边形可得,
综上所述,满足条件的点P坐标为,,,,.
本题考核知识点:反比例函数,矩形,翻折,直角三角形等综合知识. 解题关键点:作辅助线,数形结合,分类讨论.
18、(1)x>3(2)y=-x+5(3)9.5
【解析】
(1)根据C点坐标结合图象可直接得到答案;
(2)利用待定系数法把点A(5,0),C(3,2)代入y=kx+b可得关于k、b得方程组,再解方程组即可;
(3)由直线解析式求得点A、点B和点D的坐标,进而根据S四边形BODC=S△AOB-S△ACD进行求解即可得.
【详解】
(1)根据图象可得不等式2x-4>kx+b的解集为:x>3;
(2)把点A(5,0),C(3,2)代入y=kx+b可得:
,解得:,
所以解析式为:y=-x+5;
(3)把x=0代入y=-x+5得:y=5,
所以点B(0,5),
把y=0代入y=-x+5得:x=2,
所以点A(5,0),
把y=0代入y=2x-4得:x=2,
所以点D(2,0),
所以DA=3,
所以S四边形BODC=S△AOB-S△ACD==9.5.
本题考查了待定系数法求一次函数解析式,直线与坐标轴的交点,一次函数与一元一次不等式的关系,不规则图形的面积等,熟练掌握待定系数法、注意数形结合思想的运用是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5 3.75 1
【解析】
首先根据图象中的数据可求出进水管以及出水管的进出水速度,进而利用容器内的水量列出方程求出即可.
【详解】
解:由图象可得出:
进水速度为:20÷4=5(升/分钟),
出水速度为:5-(30-20)÷(12-4)=3.75(升/分钟),
(a-4)×(5-3.75)+20=(24-a)×3.75
解得:a=1.
故答案为:5;3.75;1
此题主要考查了一次函数的应用以及一元一次方程的应用等知识,利用图象得出进出水管的速度是解题关键.
20、1.
【解析】
先移项,然后利用平方差公式和因式分解法进行因式分解,则易求a+b的值.
【详解】
由a2﹣a=b2﹣b,得
a2﹣b2﹣(a﹣b)=2,
(a+b)(a﹣b)﹣(a﹣b)=2,
(a﹣b)(a+b﹣1)=2.
∵a≠b,
∴a+b﹣1=2,
则a+b=1.
故答案是:1.
本题考查了因式分解的应用.注意:a≠b条件的应用,该条件告诉我们a﹣b≠2,所以必须a+b﹣1=2.
21、
【解析】
如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.
∵四边形OABC是菱形,
∴AC⊥OB,GC=AG,OG=BG=2,A. C关于直线OB对称,
∴PC+PD=PA+PD=DA,
∴此时PC+PD最短,
在RT△AOG中,AG=,
∴AC=2,
∵OA⋅BK=⋅AC⋅OB,
∴BK=4,AK==3,
∴点B坐标(8,4),
∴直线OB解析式为y=x,直线AD解析式为y=−x+1,
由,解得,
∴点P坐标(,).
故答案为:(,).
点睛:本题考查了菱形的性质、轴对称-最短路径问题、坐标与图象的性质等知识,解题的关键是正确找到点P的位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.
22、>
【解析】
分析:根据一次函数的性质得到y随x的增大而减小,根据1<2即可得出答案.
详解:∵函数中,k= -3<0, ∴y随x的增大而减小,∵函数y= -3x+2的图象经过点A(1,m)和点B(2,n),1<2, ∴m>n,故答案为:>.
点睛:本题主要考查对一次函数图象上点的坐标特征,一次函数的性质等知识点的理解和掌握,能熟练地运用一次函数的性质进行推理是本题的关键.
23、(0,2)或(0,)
【解析】
试题分析:∵直线沿轴平移3个单位,包括向上和向下,
∵平移后的解析式为或.
∵与轴的交点坐标为(0,2);与轴的交点坐标为(0,).
二、解答题(本大题共3个小题,共30分)
24、解:(1)D错误
(2)众数为1,中位数为1.
(2)①小宇的分析是从第二步开始出现错误的.
②1278(颗)
【解析】
分析:(1)条形统计图中D的人数错误,应为20×10%.
(2)根据条形统计图及扇形统计图得出众数与中位数即可.
(2)①小宇的分析是从第二步开始出现错误的;
②求出正确的平均数,乘以260即可得到结果.
解:(1)D错误,理由为:
∵共随机抽查了20名学生每人的植树量,由扇形图知D占10%,
∴D的人数为20×10%=2≠2.
(2)众数为1,中位数为1.
(2)①小宇的分析是从第二步开始出现错误的.
②(棵).
估计260名学生共植树1.2×260=1278(颗)
25、 (1); (2).
【解析】
(1)先进行二次根式的乘法运算,然后再化简二次根式,最后合并同类二次根式即可得解;
(2)利用完全平方公式进行计算即可得解.
【详解】
(1)
=
=
=;
(2)
=40-60+45
=.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
26、证明见解析.
【解析】
分析:连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD为平行四边形,利用平行四边形的性质即可得证.
详解:证明:连接DE,FG,
,CE是的中位线,
,E是AB,AC的中点,
,,
同理:,,
,,
四边形DEFG是平行四边形,
,.
点睛:此题考查了三角形中位线定理,以及平行线的判定,熟练掌握中位线定理是解本题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届江苏省扬州市仪征市第三中学数学九上开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省扬州市江都区国际学校数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市港闸区数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

