2025届广东省阳东广雅学校九上数学开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知两点,在函数的图象上,当时,下列结论正确的是( ).
A.B.C.D.
2、(4分)下列关于变量,的关系,其中不是的函数的是( )
A.B.
C.D.
3、(4分)已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )
A.4B.16C.D.4或
4、(4分)如图,正方形网格中的每个小正方形的边长为1,将绕旋转中心旋转某个角度后得到,其中点A,B,C的对应点是点,,,那么旋转中心是( )
A.点QB.点PC.点ND.点M
5、(4分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:
①一次购买种子数量不超过l0千克时,销售价格为5元/千克;
②一次购买30千克种子时,付款金额为100元;
③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:
④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.
其中正确的个数是
A.1个B.2个C.3个D.4个
6、(4分)直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为( )
A.B.C.D.
7、(4分)为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是( )
A.方案一B.方案二C.方案三D.方案四
8、(4分)等腰三角形的一个角为50°,则这个等腰三角形的底角为( )
A.65°B.65°或80°C.50°或65°D.40°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:=__.
10、(4分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.
11、(4分)如图,在正方形ABCD中,对角线AC,BD交于点O,E为OB上的点,∠EAB=15°,若OE=,则AB的长为__.
12、(4分)方程=-1的根为________
13、(4分)函数中,自变量________的取值范围是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
15、(8分)如图,在四边形是边长为4的正方形点P为OA边上任意一点(与点不重合),连接CP,过点P作,且,过点M作,交于点联结,设.
(1)当时,点的坐标为( , )
(2)设,求出与的函数关系式,写出函数的自变量的取值范围.
(3)在轴正半轴上存在点,使得是等腰三角形,请直接写出不少于4个符合条件的点的坐标(用的式子表示)
16、(8分)已知一次函数的图象经过点(-2,-7)和(2,5),求该一次函数解析式并求出函数图象与y轴的交点坐标.
17、(10分)为调查某校初二学生一天零花钱的情况,随机调查了初二级部分学生的零钱金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为_____,图①中的值是_____;
(2)求本次调查获取的样本数据的平均数;
(3)根据样本数据,估计该年级300名学生每天零花钱不多于10元的学生人数.
18、(10分)某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.
(1)求第一批套尺购进时单价是多少?
(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为_____.
20、(4分)如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若BE=4cm,则AC的长是____________cm.
21、(4分)某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:
有一位同学根据上面表格得出如下结论:
①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.
上述结论正确的是_______(填序号).
22、(4分)函数y=-x,在x=10时的函数值是______.
23、(4分)在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分).
25、(10分)解方程:x(x﹣3)=1.
26、(12分)如图,在平面直角坐标系xOy中,点,点,点.
①作出关于y轴的对称图形;
②写出点、、的坐标
(2)已知点,点在直线的图象上,求的函数解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵反比例函数 中,k=−5<0,
∴此函数图象的两个分支在二、四象限,
∵x1>x2>0,
∴两点都在第四象限,
∵在第四象限内y的值随x的增大而增大,
∴y2
2、B
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.
【详解】
解:A、C、D当x取值时,y有唯一的值对应,
故选B.
本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
3、D
【解析】
试题解析:当3和5都是直角边时,第三边长为:=;
当5是斜边长时,第三边长为:=1.
故选D.
4、C
【解析】
由图形绕某点旋转的性质(对应点到旋转中心的距离相等)可知旋转中心.
【详解】
解:点A的对应点是点,由图像可得,根据旋转的性质可知点M、P、Q都不是旋转中心,只有,且,所以点N是旋转中心.
故选:C
本题考查了图形的旋转,可由旋转的性质确定旋转前后两个图形的旋转中心,灵活应用旋转的性质是解题的关键.
5、D
【解析】
①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;
②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;
③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;
④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.
解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;
②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;
③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;
④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,
分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,
而150-125=25元,
所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.
故选D.
6、C
【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.
【详解】
两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.
故选:C.
此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7、D
【解析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.
【详解】
解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.
故选:D.
此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.
8、C
【解析】
已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.
【详解】
当50°是等腰三角形的顶角时,则底角为(180°﹣50°)×=65°;
当50°是底角时也可以.
故选C.
本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
解:.故答案为.
10、1.
【解析】
解:设售价至少应定为x元/千克,
依题可得方程x(1-5%)×80≥760,
解得x≥1
故答案为1.
本题考查一元一次不等式的应用.
11、3
【解析】
根据正方形的性质得到OA=OB,∠AOB=90°,则△OAB为等腰直角三角形,所以∠OAE=45°-∠EAB=30°,在Rt△AOE中利用含30度的直角三角形三边的关系得到OA=3,然后利用等腰直角三角形的性质得到AB的长.
【详解】
解:∵四边形ABCD为正方形,
∴OA=OB,∠AOB=90°,
∴∠OAB=45°,
∴∠OAE=45°-∠EAB=45°-15°=30°,
在Rt△AOE中,OA=OE=×=3,
在Rt△OAB中,AB=OA=3.
故答案为3.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.
12、
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.
【详解】
解:去分母得:,
解得:,
经检验是分式方程的解,
故答案为:
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
13、且
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于O,可以求出x的范围.
【详解】
解:根据题意得:
计算得出: x≥-2且x≠1.
故答案是: x≥-2且x≠1.
本题考查了二次根式被开方数大于等于0及分式中分母不能为0等知识.
三、解答题(本大题共5个小题,共48分)
14、详见解析
【解析】
根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
【详解】
证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)
15、(1)点的坐标为;(2);(3),
,,
【解析】
(1)过点作,由“”可证,可得,,即可求点坐标;
(2)由(1)可知,设OP=x,则可得M点坐标为(4+x,x),由直线OB解析式可得N(x,x),即可知MN=4,由一组对边平行而且相等的四边形是平行四边形即可证明四边形是平行四边形,进而可求与的函数关系式;
(3)首先画出符合要求的点的图形,共分三种情况,第一种情况:当为底边时,第二种情况:当M为顶点为腰时,第三种情况:当N为顶点为腰时,然后根据图形特征结合勾股定理求出各种情况点的坐标即可解答.
【详解】
解:(1)如图,过点作,
,且
,且,
,
点坐标为
故答案为
(2)由(1)可知
,
点坐标为
四边形是边长为4的正方形,
点
直线的解析式为:
,交于点,
点坐标为
,且
四边形是平行四边形
(3)在轴正半轴上存在点,使得是等腰三角形,
此时点的坐标为:,,,,,,其中,
理由:当(2)可知,,,轴,所以共分为以下几种请:
第一种情况:当为底边时,作的垂直平分线,与轴的交点为,如图2所示
,
,
第二种情况:如图3所示,
当M为顶点为腰时,以为圆心,的长为半径画弧交轴于点、,连接、,
则,
,
,
,,
,
,
,;
第三种情况,当以N为顶点、为腰时,以为圆心,长为半径画圆弧交轴正半轴于点,
当时,如图4所示,
则,
,
即,.
当时,
则,此时点与点重合,舍去;
当时,如图5,以为圆心,为半径画弧,与轴的交点为,.
的坐标为:,.
,
,
所以,综上所述,,,,,,,使是等腰三角形.
本题考查四边形综合题,解题的关键是明确题意,画出相应的图象,找出所求问题需要的条件,利用数形结合的思想解答问题.
16、y=3x-1, 函数图象与y轴的交点坐标(0,-1).
【解析】
设一次函数解析式为y=kx+b,把一次函数图象上两个已知点的坐标代入得到,然后解方程组求出k、b即可得到一次函数解析式;计算出一次函数当x=0时所对应的函数值即可这个一次函数的图象与y轴的交点坐标.
【详解】
设该一次函数解析式为
把点(-2,-7)和(2,5)代入得:
解得
当x=0时,y= -1
∴交点坐标为(0,-1)
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于利用待定系数法求解析式.
17、(1)50,32;(2)16;(3)1.
【解析】
(1)用零花钱为5元频数除以本组所占百分比即可求出抽样调查人数,求出零花钱为10元人数所占比例即可求出m;
(2)根据加权平均数计算公式即可解决问题;
(3)用300乘以样本中零花钱不多于10元的学生所占百分比即可求解.
【详解】
解:(1)4÷8%=50(人),
,
∴m=32;
(2)(元);
(3)(人).
本题考查了扇形统计图,条形统计图,加权平均数,用样本估计总体等知识,熟记相关知识点是解题关键.
18、(1)1
(1)
【解析】
(1)设第一批套尺购进时单价是x元/套,则设第二批套尺购进时单价是元/套,根据题意可得等量关系:第二批套尺数量﹣第一批套尺数量=100套,根据等量关系列出方程即可;
(1)两批套尺得总数量×4﹣两批套尺的总进价=利润,代入数进行计算即可.
【详解】
(1)设第一批套尺购进时单价是x元/套.
由题意得:,
解得:x=1.
经检验:x=1是所列方程的解.
答:第一批套尺购进时单价是1元/套;
(1)(元).
答:商店可以盈利1900元.
分式方程的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
【详解】
解:过点E作ME⊥AD,延长ME交BC与N,
∵四边形ABCD是矩形
∴AD∥BC,且ME⊥DA
∴EN⊥BC 且∠A=90°=∠ABC=90°
∴四边形ABNM是矩形
∴AB=MN=5,AM=BN
若ME:EN=1:4,如图1
∵ME:EN=1:4,MN=5
∴ME=1,EN=4
∵折叠
∴BE=AB=5,AP=PE
在Rt△BEN中,BN==3
∴AM=3
在Rt△PME中,PE2=ME2+PM2
AP2=(3﹣AP)2+1
解得AP=
若ME:EN=4:1,则EN=1,ME=4,如 图2
在Rt△BEN中,BN==2
∴AM=2
在Rt△PME中,PE2=ME2+PM2
AP2=(2﹣AP )2+16
解得AP=
若点E在矩形外,如图
∵EN:EM=1:4
∴EN=,EM=
在Rt△BEN中,BN==
∴AM=
在Rt△PME中,PE2=ME2+PM2
AP2=(AP﹣)2+()2
解得:AP=5
故答案为,,5.
本题考查矩形的性质、折叠的性质和勾股定理,注意分情况讨论是解题关键.
20、4+4
【解析】
易证△ABC和△DEB是等腰直角三角形,然后求出DE和BD,结合角平分线的性质定理可得答案.
【详解】
解:∵∠C=90°,AC=BC,DE⊥AB,
∴△ABC和△DEB是等腰直角三角形,
∵BE=4cm,
∴DE=4cm,cm,
∵AD是∠CAB的角平分线,
∴CD=DE=4cm,
∴AC=BC=CD+BD=(cm),
故答案为:.
本题考查了等腰直角三角形的判定和性质、勾股定理以及角平分线的性质定理,求出DE和BD的长是解题的关键.
21、①②③.
【解析】
根据平均数、方差和中位数的意义,可知:甲乙的平均数相同,所以①甲、乙两班学生的平均水平相同.根据中位数可知乙的中位数大,所以②乙班优秀的人数比甲班优秀的人数多.根据方差数据可知,方差越大波动越大,反之越小,所以甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.
故答案为①②③.
本题考查统计知识中的中位数、平均数和方差的意义.要知道平均数和中位数反映的是数据的集中趋势,方差反映的是离散程度.
22、-1
【解析】
将函数的自变量的值代入函数解析式计算即可得解.
【详解】
解:当时,y=-=-=-1.
故答案为:-1.
本题考查了一次函数图象上点的坐标特征,准确计算即可,比较简单.
23、1
【解析】
如图1,当点D与点Q重合时,根据翻折对称性可得
A′D=AD=13,
在Rt△A′CD中,A′D2=A′C2+CD2,
即132=(13-A′B)2+52,
解得A′B=1,
如图2,当点P与点B重合时,根据翻折对称性可得A′B=AB=5,
∵5-1=1,
∴点A′在BC边上可移动的最大距离为1.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
先根据平方差和完全平方公式化简,再进行加减运算即可.
【详解】
解:原式=
=
=
本题是对二次根式混合运算的考查,熟练掌握平方差和完全平方公式是解决本题的关键.
25、x2=2,x2=﹣2
【解析】
把方程化成一般形式,用十字相乘法因式分解求出方程的根.
【详解】
解:x2﹣3x﹣2=0
(x﹣2)(x+2)=0
x﹣2=0或x+2=0
∴x2=2,x2=﹣2.
本题考查了一元二次方程的解法,根据题目特点,可以灵活选择合适的方法进行解答,使计算变得简单.
26、 (1)①详见解析;②、、;(2)
【解析】
①依据轴对称的性质,即可得到△ABC关于y轴的对称图形△A1B1C1;②依据△A1B1C1的位置,即可得到点A1、B1、C1的坐标;
【详解】
解:(1)①作图如下.
②、、.
(2)由题意,
解得
∴函数解析式为.
本题主要考查了利用轴对称变换作图以及待定系数法的运用,掌握轴对称的性质是解决问题的关键.
题号
一
二
三
四
五
总分
得分
2024年武汉广雅初级中学九上数学开学统考模拟试题【含答案】: 这是一份2024年武汉广雅初级中学九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广东省阳东广雅学校九年级数学第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年广东省阳东广雅学校九年级数学第一学期期末达标检测模拟试题含答案,共7页。试卷主要包含了中,,,,则的值是等内容,欢迎下载使用。

