


2024-2025学年四川省甘孜县九年级数学第一学期开学综合测试试题【含答案】
展开
这是一份2024-2025学年四川省甘孜县九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,∠B=90°,以A为圆心,AE长为半径画弧,分别交AB、AC于F、E两点;分别以点E和点F为圆心,大于EF且相等的长为半径画弧,两弧相交于点G,作射线AG,交BC于点D,若BD=,AC长是分式方程的解,则△ACD的面积是( )
A.B.C.4D.3
2、(4分)如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到ΔAEF,若AC=,则阴影部分的面积为( )
A.1B.C.D.
3、(4分)如图,点是正方形的边上一点,把绕点顺时针旋转到的位置.若四边形AECF的面积为20,DE=2,则AE的长为( )
A.4B.C.6D.
4、(4分)如图,,点是垂直平分线的交点,则的度数是( )
A.B.
C.D.
5、(4分)某区为了解5600名初中生的身高情况,抽取了300名学生进行身高测量.在这个问题中,样本是()
A.300B.300名学生C.300名学生的身高情况D.5600名学生的身高情况
6、(4分)若点在第四象限,则的取值范围是( )
A.B.C.D.
7、(4分)如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是( )
A.11B.13C.15D.17
8、(4分)下列命题:
①在函数:y=-1x-1;y=3x;y=;y=-;y=(x<0)中,y随x增大而减小的有3个函数;
②对角线互相垂直平分且相等的四边形是正方形;
③反比例函数图象是两条无限接近坐标轴的曲线,它只是中心对称图形;
④已知数据x1、x1、x3的方差为s1,则数据x1+1,x3+1,x3+1的方差为s3+1.
其中是真命题的个数是( )
A.1个B.1个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
10、(4分)用4个全等的正八边形拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则的值为__________.
11、(4分)因式分解:3x3﹣12x=_____.
12、(4分)在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…,按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线y=kx+b和x轴上.已知C1(1,﹣1),C2(,),则点A3的坐标是_____.
13、(4分)对于实数,我们用符号表示两数中较小的数,如.因此, ________;若,则________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系xOy中,点A( ,0),点B(0,1),直线EF与x轴垂直,A为垂足。
(1)若线段AB绕点A按顺时针方向旋转到AB′的位置,并使得AB与AB′关于直线EF对称,请你画出线段AB所扫过的区域(用阴影表示);
(2)计算(1)中线段AB所扫过区域的面积。
15、(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
16、(8分)如图所示,沿AE折叠矩形,点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm,求EC的长.
17、(10分)如图,已知正比例函数y=ax与反比例函数y=的图象交于点A(3,2)
(1)求上述两函数的表达式;
(2)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A点作直线AC∥y轴交x轴于点C,交直线MB于点D.若s四边形OADM=6,求点M的坐标,并判断线段BM与DM的大小关系,说明理由;
(3)探索:x轴上是否存在点P.使△OAP是等腰三角形?若存在,求出点P的坐标; 若不存在,说明理由.
18、(10分)如图,中,是的中点,将沿折叠后得到,且 点在□内部.将延长交于点.
(1)猜想并填空:________(填“”、“”、“”);
(2)请证明你的猜想;
(3)如图,当,设,,,证明:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
20、(4分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.
21、(4分)已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.
22、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.
23、(4分)某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.
(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
25、(10分)解分式方程:.
26、(12分)在中,,,点是的中点,,垂足为,连接.
(1)如图1,与的数量关系是__________.
(2)如图2,若是线段上一动点(点不与点、重合),连接,将线段绕点逆时针旋转得到线段,连接,请猜想三者之间的数量关系,并证明你的结论;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用角平分线的性质定理证明DB=DH=,再根据三角形的面积公式计算即可
【详解】
如图,作DH⊥AC于H,
∵
∴5(x-2)=3x
∴x=5
经检验:x=5是分式方程的解
∵AC长是分式方程的解
∴AC=5
∵∠B=90°
∴DB⊥AB,DH⊥AC
∵AD平分∠BAC,
∴DH=DB=
S=
故选A
此题考查角平分线的性质定理和三角形面积,解题关键在于做辅助线
2、C
【解析】
利用旋转得出∠DAF=30°,就可以利用直角三角形性质,求出阴影部分面积.
【详解】
解:如图.设旋转后,EF交AB与点D,因为等腰直角三角形ABC中,∠BAC=90°,又因为旋转角为15°,所以∠DAF=30°,因为AF=AC=,所以DF=1,
所以阴影部分的面积为.
故选:C.
3、D
【解析】
利用旋转的性质得出四边形 AECF的面积等于正方形 ABCD的面积,进而可求
出正方形的边长,再利用勾股定理得出答案.
【详解】
绕点顺时针旋转到的位置.
四边形的面积等于正方形的面积等于20,
,
,
中,
故选:.
本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应
边关系是解题关键.
4、B
【解析】
利用线段垂直平分线的性质即可得出答案.
【详解】
解:
连接OA,OB
∵∠BAC=80°
∴∠ABC+∠ACB=100°
又∵O是AB和AC垂直平分线的交点
∴OA=OB,OA=OC
∴∠OBA=∠OAB,∠OCA=∠OAC,OB=OC
∴∠OBA+∠OCA=80°
∴∠OBA+∠OCB=100°-80°=20°
又∵OB=OC
∴∠BCO=∠CBO=10°
故答案选择B.
本题主要考查了线段垂直平分线和等腰三角形的性质.
5、C
【解析】
根据样本的定义即可判断.
【详解】
依题意可知样本是300名学生的身高情况
故选C.
此题主要考查统计分析,解题的关键是熟知样本的定义.
6、D
【解析】
根据第四象限内点的坐标特征为(+,-)列不等式求解即可.
【详解】
由题意得
2m-10.5时,(x−1)2=1,
∴x−1=±1,
∴x−1=1,x−1=−1,
解得:x1=2,x2=0(不合题意,舍去),
当x⩽0.5时,x2=1,
解得:x1=1(不合题意,舍去),x2=−1,
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2).
【解析】
(1)将线段AB绕点A按顺时针方向旋转到AB′的位置,使B′的坐标为(2,1);
(2)利用扇形面积公式求出线段AB所扫过区域的面积即可.
【详解】
(1)如图所示;
(2)∵点A(,0),点B(0,1),
∴BO=1,AO=,
∴AB= =2,
∴tan∠BAO=,
∴∠BAO=30°,
∵线段AB绕点A按顺时针方向旋转到AB′的位置,
∴∠1=30°,
∴∠BAB′=180°−30°−30°=120°,
阴影部分的面积为: .
此题考查作图-旋转变换,扇形面积的计算,解题关键在于掌握作图法则
15、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.
【解析】
【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;
(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,
(3)根据勾股定理逆定理解答即可.
【详解】(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,
即OB2+OA12=A1B2,
所以三角形的形状为等腰直角三角形.
【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
16、1
【解析】
先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC−BF=4,设CE=x,则DE=EF=8−x,然后在Rt△ECF中根据勾股定理得到x2+42=(8−x)2,再解方程即可得到CE的长.
【详解】
∵四边形ABCD为矩形,
∴AD=BC=10,AB=CD=8,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=10,EF=DE,
在Rt△ABF中,∵BF==6,
∴CF=BC−BF=10−6=4,
设CE=x,则DE=EF=8−x
在Rt△ECF中,∵CE2+FC2=EF2,
∴x2+42=(8−x)2,解得x=1,
即CE=1.
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.
17、(1)反比例函数的表达式为:y=,正比例函数的表达式为y=x;(2)BM=DM;(3)存在,(,0)或(﹣,0)或(6,0)或(,0)
【解析】
(1)将A(3,2)分别代入y=,y=ax中,得ak的值,进而可得正比例函数和反比例函数的表达式;
(2)由S△OMB=S△OAC=|k|=3,可得S矩形OBDC=12;即OC•OB=12;进而可得mn的值,故可得BM与DM的大小;比较可得其大小关系;
(3)存在.由(2)可知D(3,4),根据矩形的性质得A(3,2),分为OA为等腰三角形的腰,OA为等腰三角形的底,分别求P点坐标.
【详解】
解:(1)将A(3,2)分别代入y=,y=ax中,得:2=,3a=2
∴k=6,a=,
∴反比例函数的表达式为:y=,
正比例函数的表达式为y=x;
(2)BM=DM
理由:∵S△OMB=S△OAC=×|k|=3
∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12
即OC•OB=12
∵OC=3
∴OB=4
即n=4
∴m==,即点M的坐标为(,4)
∴MB=,MD=3﹣=,
∴MB=MD;
(3)存在.
由(2)得A(3,2),OA=
当OA为等腰三角形的腰时,P(,0)或(﹣,0)或(6,0),
当OA为等腰三角形的底,P(,0).
∴满足条件的P点坐标为(,0)或(﹣,0)或(6,0)或(,0).
此题综合考查了反比例函数,正比例函数等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.
18、(1)=;(2)见解析;(3)见解析
【解析】
(1)根据折叠的性质、平行四边形的性质、以及等腰三角形的判定与性质可猜想为相等;
(2)先证明∠EDF=∠EGF,再证明EG=ED,则等边对等角得:∠EGD=∠EDG,相减可得结论;
(3)分别表示BF、CF、BC的长,证明ABCD是矩形得:∠C=90°,在Rt△BCF中,由勾股定理列式可得结论.
【详解】
解:(1)GF=DF,
故答案为:=;
(2)理由是:
连接DG,
由折叠得:AE=EG,∠A=∠BGE,
∵E在AD的中点,
∴AE=ED,
∴ED=EG,
∴∠EGD=∠EDG,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A+∠ADC=180°,
∵∠BGE+∠EGF=180°,
∴∠EDF=∠EGF,
∴∠EDF-∠EDG=∠EGF-∠EGD,
即∠GDF=∠DGF,
∴GF=DF;
(3)证明:如图2,由(2)得:DF=GF=b,
由图可得:BF=BG+GF=a+b,
由折叠可得:AB=BG=a,AE=EG=c,
在ABCD中,
BC=AD=2AE=2c,CD=AB=a,
∴CF=CD-DF=a-b,
∵∠A=90°,
∴ABCD是矩形,
∴∠C=90°,
在Rt△BCF中,由勾股定理得,
BC2+CF2=BF2,
∴(2c)2+(a-b)2=(a+b)2,
整理得:c2=ab.
本题考查了平行四边形的性质、矩形的性质和判定、勾股定理、折叠的性质、等腰三角形的性质与判定,难度适中,熟练掌握折叠前后的边和角相等是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(3+,)或(-3+,)
【解析】
根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
【详解】
如图,
设A(m,m)(m>0),如图所示,
∴点B的纵坐标为m,
∵点B在双曲线y=上,
∴,
∴x=,
∵AB=6,
即|m-|=6,
∴m-=6或-m=6,
∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
∴B(3+,)或(-3+,),
故答案为:(3+,)或(-3+,).
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
20、(9,0)
【解析】
根据位似图形的定义,连接A′A,B′B并延长交于(9,0),
所以位似中心的坐标为(9,0).
故答案为:(9,0).
21、
【解析】
直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.
【详解】
如图所示:
关于x的不等式kx+b>0的解集是:x<1.
故答案为:x<1.
此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.
22、三角形的中位线等于第三边的一半
【解析】
∵D,E分别是AC,BC的中点,
∴DE是△ABC的中位线,
∴DE=AB,
设DE=a,则AB=2a,
故答案是:三角形的中位线等于第三边的一半.
23、
【解析】
根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式.
【详解】
解:根据题意,
y=400x+500(100-x)=-100x+50000;
故答案为
本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式.
二、解答题(本大题共3个小题,共30分)
24、(1)△CDF是等腰三角形;(2)∠APD=45°.
【解析】
(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.
【详解】
(1)△CDF是等腰直角三角形,理由如下:
∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
在△FAD与△DBC中,,
∴△FAD≌△DBC(SAS),
∴FD=DC,∴△CDF是等腰三角形,
∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,
如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
在△FAD与△DBC中,
,∴△FAD≌△DBC(SAS),
∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形,∴∠FCD=45°,
∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,
∴AE∥CF,∴∠APD=∠FCD=45°.
25、
【解析】
首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.
【详解】
解:方程两边乘以得:,
解这个方程得:,
检验:当时,,
是原方程的解;
原方程的解是:.
本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.
26、(1)DE=BC;(2)
【解析】
(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,可得DE=BD=BC;
(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”判断△DCP≌△DBF,则CP=BF,利用CP+BP =BC,DE=BC可得到DE =(BF+BP).
【详解】
解:(1)∵∠ACB=90°,∠A=30°,
∴∠B=60°,
∵点D是AB的中点,
∴DB=DC,
∴△DCB为等边三角形,
∵DE⊥BC,
∴DE=BC;
故答案为DE=BD=BC.
(2)DE =(BF+BP).理由如下:
∵线段DP绕点D逆时针旋转60°,得到线段DF,
∴∠PDF=60°,DP=DF,
而∠CDB=60°,
∴∠CDB-∠PDB=∠PDF-∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中
,
∴△DCP≌△DBF(SAS),
∴CP=BF,
而CP=BC-BP,
∴BF+BP=BC,
∵DE=BC,
∴DE =(BF+BP);
故答案为DE =(BF+BP).
本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质以及含30度的直角三角形三边的关系.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年四川省成都市天府七中学九年级数学第一学期开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年陕师大附中九年级数学第一学期开学综合测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省兰考县数学九年级第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。