


2024-2025学年安徽省淮南市西部地区数学九上开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于( )
A.100°B.105°C.115°D.120°
2、(4分)如图,分别是的边上的点,将四边形沿翻折,得到交于点则的周长为( )
A.B.C.D.
3、(4分)八年级甲、乙、丙三个班的学生人数相同,上期期末体育成绩的平均分相同,三个班上期期末体育成绩的方差分别是:,,,教体育的杜老师更喜欢上体育水平接近的学生,若从这三个班选一个班上课,杜老师更喜欢上课的班是( )
A.甲班B.乙班C.丙班D.上哪个班都一样
4、(4分)一个多边形的每个内角都等于108°,则这个多边形的边数为( ).
A.5B.6C.7D.8
5、(4分)下列事件是确定事件的是( )
A.射击运动员只射击1次,就命中靶心
B.打开电视,正在播放新闻
C.任意一个三角形,它的内角和等于180°
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6
6、(4分)若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的时间以a(km/h)的速度行走,另一半的时间以b(km/h)的速度行走(a≠b),则先到达目的地的是( )
A.甲B.乙
C.同时到达D.无法确定
7、(4分)的算术平方根是( )
A.B.﹣C.D.±
8、(4分)一个多边形的内角和是7200,则这个多边形的边数是( )
A.2B.4C.6D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,矩形纸片OABC的顶点A,C分别在x轴,y轴的正半轴上,将纸片沿过点C的直线翻折,使点B恰好落在x轴上的点B′处,折痕交AB于点D.若OC=9,,则折痕CD所在直线的解析式为____.
10、(4分)如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为 .
11、(4分)如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,G,H为BC上的点连接DH,EG.若AB=5cm,BC=6cm,GH=3cm,则图中阴影部分的面积为_____.
12、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是________ cm.
13、(4分)如图,在矩形中,沿着对角线翻折能与重合,且与交于点,若,则的面积为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).
(1)求G点坐标
(2)求直线EF解析式
(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由
15、(8分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.
(1)求证:BD=2CD;
(2)若CD=2,求△ABD的面积.
16、(8分)如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为1.
(1)求点C的坐标及直线BC的解析式;
(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;
(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
17、(10分)如图是两个全等的直角三角形(和)摆放成的图形,其中,,点B落在DE边上,AB与CD相交于点F.若,求这两个直角三角形重叠部分的周长.
18、(10分)给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形中,点,,,分别为边、、、的中点,则中点四边形形状是_______________.
(2)如图2,点是四边形内一点,且满足,,,点,,,分别为边、、、的中点,求证:中点四边形是正方形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为________________.
20、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(,3),则不等式2x>ax+4的解集为___.
21、(4分)如图,在矩形ABCD中,已知AB=3,BC=4,则BD=________.
22、(4分)若式子有意义,则x的取值范围是________.
23、(4分)如果是两个不相等的实数,且满足,那么代数式_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知关于x的一元二次方程x1﹣3x+k=0方程有两实根x1和x1.
(1)求实数k的取值范围;
(1)当x1和x1是一个矩形两邻边的长且矩形的对角线长为,求k的值.
25、(10分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.
(1)第一批手机壳的进货单价是多少元?
(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?
26、(12分)我们借助对同一个长方形面积的不同表示,可以解释一些多项式的因式分解.例如选取图①中的卡片张、卡片张、卡片张,就能拼成图②所示的正方形,从而可以解释.请用卡片张、卡片张、卡片张拼成一个长方形,画图并完成多项式的因式分解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分析:根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数即可.
详解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠C=180°﹣75°=105°.
故选B.
点睛:本题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题的关键.
2、C
【解析】
根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEG=∠EGF,
∵将四边形EFCD沿EF翻折,得到EFC′D′,
∴∠GEF=∠DEF=60°,
∴∠AEG=60°,
∴∠EGF=60°,
∴△EGF是等边三角形,
∴EG=FG=EF=4,
∴△GEF的周长=4×3=12,
故选:C.
本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定与性质等知识;熟练掌握翻折变换的性质是解决问题的关键.
3、B
【解析】
先比较三个班方差的大小,然后根据方差的意义进行判断.
【详解】
解:∵S2甲=6.4,S2乙=5.6,S2丙=7.1,
∴S2乙<S2甲<S2丙,
∴乙班成绩最稳定,杜老师更喜欢上课的班是乙班.
故选:B.
本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
4、A
【解析】
试题分析:设这个多边形边数为n,则根据题意得:(n-2)×180°=108n,解得:72n=360,所以n=1.故本题选A.
考点:多边形内角和公式.
5、C
【解析】
利用随机事件以及确定事件的定义分析得出答案.
【详解】
A.射击运动员只射击1次,就命中靶心,是随机事件. 故选项错误;
B.打开电视,正在播放新闻,是随机事件.故选项错误;
C.任意一个三角形,它的内角和等于180°,是必然事件.故选项正确;
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件.故选项错误.
故选C.
本题考查了随机事件和确定事件,正确把握相关事件的确定方法是解题的关键.
6、B
【解析】
设从A地到B地的路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,根据题意,分别表示出甲、乙所用时间的代数式,然后再作比较即可。
【详解】
解:设从到达目的地路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,由题意得,
而对于乙: 解得:
因为当a≠b时,(a+b)2>4ab,
所以<1
所以t甲>t乙,即甲先到达,故答案为B.
本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,本题解题的关键是表示出甲乙所用时间,并选择适当的方法比较出二者的大小.
7、C
【解析】
直接利用算术平方根的定义得出答案.
【详解】
的算术平方根是:.
故选C.
此题主要考查了算术平方根,正确把握定义是解题关键.
8、C
【解析】
n边形的内角和为(n-2)180°,由此列方程求n的值
【详解】
解:设这个多边形的边数是n,
则:(n-2)180°=720°,
解得n=6,
故选:C.
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=x+9.
【解析】
根据OC=9,先求出BC的长,继而根据折叠的性质以及勾股定理的性质求出OB′的长,求得AB′的长,设AD=m,则B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的长,进而求得点D的坐标,再利用待定系数法进行求解即可.
【详解】
∵OC=9,,
∴BC=15,
∵四边形OABC是矩形,
∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,
∴C(0,9),
∵折叠,
∴B′C=BC=15,B′D=BD,
在Rt△COB′中,OB′==12,
∴AB′=15-12=3,
设AD=m,则B′D=BD=9-m,
Rt△AB′D中,AD2+B′A2=B′D2,
即m2+32=(9-m)2,
解得m=4,
∴D(15,4)
设CD所在直线解析式为y=kx+b,
把C、D两点坐标分别代入得:,
解得:,
∴CD所在直线解析式为y=x+9,
故答案为:y=x+9.
本题考查了矩形的性质,折叠的性质,勾股定理,待定系数法求一次函数的解析式,求出点D的坐标是解本题的关键.
10、8
【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.
考点:平行四边形的性质.
11、6cm1.
【解析】
用四边形DBCE的面积减去△DOE的面积+△HOG的面积,即可得.
【详解】
解:连接DE,作AF⊥BC于F,
∵D,E分别是AB,AC的中点,
∴DE=BC=3,DE∥BC,
∵AB=AC,AF⊥BC,
∴BF=BC=3,
在Rt△ABF中,AF==4,
∴△ABC的面积=×6×4=11,
∵DE∥BC,
∴△ADE∽△ABC,
∴△ADE的面积=11×=3,
∴四边形DBCE的面积=11﹣3=9,
△DOE的面积+△HOG的面积=×3×1=3,
∴图中阴影部分的面积=9﹣3=6(cm1),
故答案为6cm1.
本题考查的知识点是三角形中位线定理,解题关键是作适当的辅助线进行解题.
12、20
【解析】
利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得HF的长即为边AD的长.
【详解】
:∵∠HEM=∠AEH,∠BEF=∠FEM,
∴∠HEF=∠HEM+∠FEM= ×180°=90°,
同理可得:∠EHG=∠HGF=∠EFG=90°,
∴四边形EFGH为矩形,
∴GH∥EF,GH=EF,
∴∠GHN=∠EFM,
在△GHN和△EFM中
∴△GHN≌△EFM(AAS),
∴HN=MF=HD,
∴AD=AH+HD=HM+MF=HF,
∴AD=20厘米.
故答案为:20
此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.
13、
【解析】
由矩形的性质及翻折变换先证AF=CF,再在Rt△CDF中利用勾股定理求出CF的长,可通过S△AFC=AF•CD求出△ACF的面积.
【详解】
∵四边形ABCD为矩形,
∴∠D=90°,AD∥BC,CD=AB=1,AD=BC=3,
∴∠FAC=∠ACB,
又∵∠B沿着对角线AC翻折能与∠E重合,
∴∠ACB=∠ACF,
∴∠FAC=∠ACF,
∴FA=FC,
在Rt△DFC中,
设FC=x,则DF=AD-AF=3-x,
∵DF2+CD2=CF2,
∴(3-x)2+12=x2,
解得,x=,
∴AF=,
∴S△AFC=AF•CD
=××1
=.
故答案是:.
考查了矩形的性质,轴对称称的性质,勾股定理,三角形的面积等,解题关键是要先求出AF的长,转化为求FC的长,在Rt△CDF中利用勾股定理求得.
三、解答题(本大题共5个小题,共48分)
14、(1)G(0,4-);(2);(3).
【解析】
1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出 ,那么OG=OA-AG=4-,于是G(0,4-);
(2)先在Rt△AGF中,由 ,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BF tan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.
【详解】
解:(1)∵F(1,4),B(3,4),
∴AF=1,BF=2,
由折叠的性质得:GF=BF=2,
在Rt△AGF中,由勾股定理得,
∵B(3,4),
∴OA=4,
∴OG=4-,
∴G(0,4-);
(2)在Rt△AGF中,
∵ ,
∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,
在Rt△BFE中,
∵BE=BFtan60°=2,
.CE=4-2,
.E(3,4-2).
设直线EF的表达式为y=kx+b,
∵E(3,4-2),F(1,4),
∴ 解得
∴ ;
(3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:
①FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.
过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.
∵GN1∥EF,直线EF的解析式为
∴直线GN1的解析式为,
当y=0时, .
∵GFM1N1是平行四边形,且G(0,4-),F(1,4),N1( ,0),
∴M,( ,);
②FG为平行四边形的一边,N点在x轴上,GFNM为平行四边形,如图2所示.
∵GFN2M2为平行四边形,
∴GN₂与FM2互相平分.
∴G(0,4-),N2点纵坐标为0
∴GN:中点的纵坐标为 ,
设GN₂中点的坐标为(x,).
∵GN2中点与FM2中点重合,
∴
∴x=
∵.GN2的中点的坐标为(),
.∴N2点的坐标为(,0).
∵GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),
∴M2();
③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.
∵GFN3M3为平行四边形,.
∴GN3与FM3互相平分.
∵G(0,4-),N2点横坐标为0,
.∴GN3中点的横坐标为0,
∴F与M3的横坐标互为相反数,
∴M3的横坐标为-1,
当x=-1时,y=,
∴M3(-1,4+2);
④FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.
过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4
∵G(0,4-),F(1,4),
∴FG中点坐标为(),
∵M4N4的中点与FG的中点重合,且N4的纵坐标为0,
.∴M4的纵坐标为8-.
5-45解方程 ,得
∴M4().
综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为: 。
本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.
15、(1)见解析;(2)6
【解析】
(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;
(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,,再根据△ABD的面积=进行计算即可.
【详解】
解:(1)如图,过D作DE⊥AB于E,
∵∠C=90°,AD是△ABC的角平分线,
∴DE=CD,
又∵∠B=30°,
∴Rt△BDE中,DE=BD,
∴BD=2DE=2CD;
(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,
∴∠BAD=∠B=30°,
∴AD=BD=2CD=4,
∴Rt△ACD中,AC=,
∴△ABD的面积为.
本题主要考查了直角三角形的性质以及勾股定理的运用,利用角平分线的的性质是解决问题的关键.
16、(1)C(3,0),直线BC的解析式为y=﹣x+4;(2)满足条件的点G坐标为(0,)或(0,﹣1);(3)存在,满足条件的点D的坐标为(,0)或(﹣,0)或(﹣,0)
【解析】
(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题.
(2)分两种情形:①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.求出.②当时,如图中,同法可得,利用待定系数法即可解决问题.
(3)利用三角形的面积公式求出点的坐标,求出直线的解析式,作交直线于,此时,,当时,可得四边形,四边形是平行四边形,可得,,,,再根据对称性可得解决问题.
【详解】
解:(1)直线与轴交于点,与轴交于点,
,,
,,
,
,
,
,
设直线的解析式为,则有,
.
直线的解析式为.
(2),,,
,设,
①当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.
四边形是正方形,易证,
,,
,
点在直线上,
,
,
.
②当时,如图中,同法可得,
点在直线上,
,
,
.
综上所述,满足条件的点坐标为或.
(3)如图3中,设,
,
,
,
,
,,
直线的解析式为,
作交直线于,此时,,
当时,可得四边形,四边形是平行四边形,可得,,,,
根据对称性可得点关于点的对称点,也符合条件,
综上所述,满足条件的点的坐标为,或,或,.
本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
17、
【解析】
根据全等三角形的性质得出BC=EC,∠ABC=∠E=60°,求出△BCE是等边三角形,求出∠DCB=30°,∠BFC=90°,解直角三角形求出BF和CF,即可求出答案.
【详解】
解:如图
∵,,
∴,,
∴是等边三角形,
∴,
又∵,
∴,
又∵,在中,
∴,,
∴的周长是.
本题考查了全等三角形的性质,含30°角的直角三角形的性质,等边三角形的性质和判定,求出BF和CF的长是解此题的关键.
18、 (1) 平行四边形;(2)见解析
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)首先证明四边形EFGH是菱形.再证明∠EHG=90°.利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
故答案为平行四边形;
(2)证明:如图2中,连接,.
∵,∴即,
在和中,
,
∴,
∴
∵点,,分别为边,,的中点,
∴,,
由(1)可知,四边形是平行四边形,
∴四边形是菱形.
如图设与交于点.与交于点,与交于点.
∵,
∴,
∵,
∴
∵,,
∴,
∵四边形是菱形,
∴四边形是正方形.
本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 .
【解析】
由题意得OA=OA1=2,
∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,
∴B1(2,0),B2(6,0),B3(14,0)…,
2=22﹣2,6=23﹣2,14=24﹣2,…
∴Bn的横坐标为,
故答案为:.
20、x>
【解析】
由于函数y=2x和y=ax+4的图象相交于点A(),观察函数图象得到当x>时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>.
【详解】
解:∵函数y=2x和y=ax+4的图象相交于点A(),∴当x>时,2x>ax+4,
即不等式2x>ax+4的解集为x>.
故答案为:x>.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
21、1
【解析】
先由矩形的性质求出CD= AB=3,再根据勾股定理可直接算出BD的长度.
【详解】
∵四边形ABCD是菱形,
∴CD= AB=3,
由勾股定理可知,BD==1.
故答案为1.
本题主要考查了矩形的性质,勾股定理的知识点,熟练掌握勾股定理是解答本题的关键.
22、
【解析】
分析:根据被开方数为非负数列不等式求解即可.
详解:由题意得,
x-2≥0,
∴x≥2.
故答案为x≥2.
点睛:本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
23、1
【解析】
由于m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,可知m,n是x2-x-3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=1,mn=-3,又n2=n+3,利用它们可以化简,然后就可以求出所求的代数式的值.
【详解】
解:由题意可知:m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,
所以m,n是x2-x-3=0的两个不相等的实数根,
则根据根与系数的关系可知:m+n=1,mn=-3,
又n2=n+3,
则2n2-mn+2m+2015
=2(n+3)-mn+2m+2015
=2n+6-mn+2m+2015
=2(m+n)-mn+2021
=2×1-(-3)+2021
=2+3+2021
=1.
故答案为:1.
本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.
二、解答题(本大题共3个小题,共30分)
24、(1);(1)
【解析】
试题分析:(1)求出△的值,根据已知得出不等式,求出即可;
(1)根据根与系数的关系得出x1+x1=3,x1•x1=k,根据已知得出x11+x11=()1,变形后代入求出即可.
试题解析:(1)∵关于x的一元二次方程x1-3x+k=0有两个实根x1和x1,
∴△=(-3)1-4k≥0,
解得:k≤,
即实数k的取值范围为k≤;
(1)由根与系数的关系得:x1+x1=3,x1•x1=k,
∵x1和x1是一个矩形两邻边的长且矩形的对角线长为,
∴x11+x11=()1,
(x1+x1)1-1x1•x1=5,
∴9-1k=5,
解得:k=1.
25、(1)8元;(2)1元.
【解析】
(1)设第一批手机壳进货单价为x元,则第二批手机壳进货单价为(x+2)元,根据单价=总价÷单价,结合第二批手机壳的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设销售单价为m元,根据获利不少于2000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.
【详解】
解:(1)设第一批手机壳进货单价为x元,
根据题意得:3• = ,
解得:x=8,
经检验,x=8是分式方程的解.
答:第一批手机壳的进货单价是8元;
(2)设销售单价为m元,
根据题意得:200(m-8)+600(m-10)≥2000,
解得:m≥1.
答:销售单价至少为1元.
本题考查分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.
26、见详解,
【解析】
先画出图形,再根据图形列式分解即可.
【详解】
解:如图,
此题主要考查了因式分解,正确的画出图形是解决问题的关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省濉溪县九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年安徽省濉溪县九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省和县九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年安徽省和县九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。