


所属成套资源:人教版七年级数学下册同步讲义专题(教师版)+(学生版)
人教版七年级数学下册同步精品讲义专题第07课 算数平方根与平方根(学生版)-
展开
这是一份人教版七年级数学下册同步精品讲义专题第07课 算数平方根与平方根(学生版)-,共9页。试卷主要包含了算术平方根的定义,平方根的定义等内容,欢迎下载使用。
目标导航
知识精讲
知识点01 平方根和算术平方根的概念
1.算术平方根的定义
如果一个 的平方等于,即,那么这个正数x叫做的 (规定0的算术平方根还是 );的算术平方根记作 ,读作“ ”,叫做 .
注意:
(1)当式子有意义时,一定表示一个 ,即 , .
(2) 没有算数平方根;
(3)算数平方根等于本身的数有: ;
(4)算数平方根 等于原来的数;
(5)注意运算结果的非负性;
2.平方根的定义
如果,那么 叫做 的平方根.求一个数的平方根的运算,叫做 .平方与开平方互为 . (≥0)的平方根的符号表达为 ,其中是的 .
注意:
(1) 才有平方根;
(2) 没有平方根;
(3)平方根等于本身的数是: ;
(4)一个正数有 个平方根,他们 ;
(5)平方根 等于原来的数;
知识点02 平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2)结果不同:和
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
注意:
知识点03 平方根的性质
(1)
(2)
知识点04 平方根小数点位数移动规律
被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动 位。
例如:,,,.
能力拓展
考法01 算数平方根与平方根的计算
【典例1】16的算术平方根是___________.
【典例2】9的平方根是_________.
【典例3】的平方根是____.
【即学即练】的平方根是 .
考法02 利用平方根解方程
【典例4】求下列各式中的x值:
(1)169x2=144;
(2)(x-2)2-36=0.
【即学即练】利用平方根求下列x的值:
(1)(x+1)2=16.
(2)3(x+2)2=27
(3)64(x+1)2﹣25=0.
考法03 平方根和算数平方根的逆运算
【典例5】已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.
【即学即练】已知2a+1的平方根是±3,5a+2b-2的算术平方根是4,求:3a-4b的平方根.
【即学即练】如果一个正数m的两个平方根分别是2a-3和a-9,求2m-2的值.
【即学即练】已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.
考法04 算数平方根结果的非负性
【典例6】已知与互为相反数.
(1)求2a-3b的平方根;
(2)解关于x的方程.
【即学即练】已知+|y-17|=0,求x+y的算术平方根.
考法05 算数平方根小数点移动规律
【典例7】观察下表,按你发现的规律填空
已知,则的值为_______.
【即学即练】若≈6.172,≈19.517,则≈__.
【即学即练】若则_______.
【即学即练】已知,则=________.
考法06 平方根的性质应用
【典例8】实数a,b在数轴上对应点的位置如图所示,化简的结果是_________________
【即学即练】实数、在数轴上的位置,化简______.
【即学即练】已知实数a在数轴上的位置如图,则化简|1﹣a|+的结果为_____.
考法07 算数平方根的估算
【典例9】的小数部分是__________.
【即学即练】若的整数部分为,小数部分为,则.
【即学即练】已知a,b为两个连续的整数,且a
相关试卷
这是一份人教版七年级数学下册同步精品讲义专题第07课 算数平方根与平方根(教师版)-,共28页。试卷主要包含了算术平方根的定义,平方根的定义等内容,欢迎下载使用。
这是一份初中数学人教版七年级下册6.1 平方根精品同步训练题,文件包含第06讲专题61平方根教师版-最新七年级数学下册同步精品讲义人教版docx、第06讲专题61平方根学生版-最新七年级数学下册同步精品讲义人教版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份人教版七年级数学下册同步精品讲义第06讲专题6.1平方根(学生版+解析),共36页。
