终身会员
搜索
    上传资料 赚现金

    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】

    立即下载
    加入资料篮
    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】第1页
    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】第2页
    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】第3页
    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】第4页
    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】第5页
    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】第6页
    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】第7页
    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】第8页
    还剩50页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】

    展开

    这是一份2025高考数学一轮复习-3.3导数与函数的极值、最值【课件】,共58页。PPT课件主要包含了知识诊断基础夯实,函数的极值,f′x<0,f′x>0,极值点,fafb,考点突破题型剖析,若a≠0,①若a<-1时,即a=-e2等内容,欢迎下载使用。
    ZHISHIZHENDUANJICHUHANGSHI
    (1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧____________,右侧___________.则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
    (2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧___________,右侧___________.则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为________,极小值和极大值统称为______.
    (1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的______;②将函数y=f(x)的各极值与端点处的函数值_______________比较,其中最大的一个是最大值,最小的一个是最小值.
    2.函数的最大(小)值
    1.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.2.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.
    解析 (1)反例:f(x)=x3,f′(x)=3x2,f′(0)=0,但x=0不是f(x)=x3的极值点.(3)反例:f(x)=x2在区间(-1,2)上的最小值为0.
    1.思考辨析(在括号内打“√”或“×”)(1)对于可导函数f(x),若f′(x0)=0,则x0为极值点.(  )(2)函数的极大值不一定是最大值,最小值也不一定是极小值.(  )(3)函数f(x)在区间(a,b)上不存在最值.(  )(4)函数f(x)在区间[a,b]上一定存在最值.(  )
    A.1 B.2 C.3 D.4
    2.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为(  )
    解析 由题意知在x=-1处f′(-1)=0,且其两侧导数值符号为左负右正.
    ∴当20≤x≤38时,y′≥0,即函数在[20,38]上单调递增,当38≤x≤40时,y′≤0,即函数在[38,40]上单调递减,
    ∴当x=38时,函数取值最大值,
    解析 f′(x)=3x2-2ax+2,由题意知f′(x)有变号零点,
    5.(易错题)函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是_______________________.
    解析 f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m.在[0,3]上,f(x)max=f(0)=4,所以m=4.
    KAODIANTUPOTIXINGPOUXI
    A.-3是函数y=f(x)的极值点B.-1是函数y=f(x)的极小值点C.y=f(x)在区间(-3,1)上单调递增D.-2是函数y=f(x)的极大值点
    例1 (多选)函数y=f(x)的导函数y=f′(x)的图象如图所示,则(  )
    角度1 根据函数图象判断极值
    解析 根据导函数的图象可知,当x∈(-∞,-3)时,f′(x)0,所以函数y=f(x)在(-∞,-3)上单调递减,在(-3,-1)上单调递增,可知-3是函数y=f(x)的极值点,所以A正确.因为函数y=f(x)在(-3,1)上单调递增,可知-1不是函数y=f(x)的极小值点,-2也不是函数y=f(x)的极大值点,所以B错误,C正确,D错误.
    令f′(x)=0,得x=2,于是当x变化时,f′(x),f(x)的变化情况如下表.
    故f(x)在定义域上的极大值为f(x)极大值=f(2)=ln 2-1,无极小值.
    角度2 求已知函数的极值
    (2)讨论函数f(x)在定义域内极值点的个数.解 由(1)知,函数f(x)的定义域为(0,+∞),
    当a≤0时,f′(x)>0在(0,+∞)上恒成立,则函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;
    综上可知,当a≤0时,函数f(x)无极值点,
    令h(x)=mx2-x+m,要使g(x)存在两个极值点x1,x2,则方程mx2-x+m=0有两个不相等的正数根x1,x2.
    角度3 由函数的极值求参数
    A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)
    训练1 (1)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )
    解析 由题图可知,当x0;当-2

    相关课件

    2025年高考数学一轮复习-3.3-导数与函数的极值、最值【课件】:

    这是一份2025年高考数学一轮复习-3.3-导数与函数的极值、最值【课件】,共60页。

    §3.3 导数与函数的极值、最值 课件-2025高考数学一轮复习:

    这是一份§3.3 导数与函数的极值、最值 课件-2025高考数学一轮复习,共60页。PPT课件主要包含了落实主干知识,极大值,极小值,连续不断,fafb,探究核心题型,列表如下,课时精练,单项选择题,解答题等内容,欢迎下载使用。

    高考复习 3.3 导数与函数的极值、最值课件PPT:

    这是一份高考复习 3.3 导数与函数的极值、最值课件PPT,共55页。PPT课件主要包含了f′x0,连续不断,答案C,答案A,答案B,-∞0,-12等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map