搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    高中数学学案04   第1章   第4课时 基本不等式01
    高中数学学案04   第1章   第4课时 基本不等式02
    高中数学学案04   第1章   第4课时 基本不等式03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第一册第二章 一元二次函数、方程和不等式2.2 基本不等式第4课时学案及答案

    展开
    这是一份人教A版 (2019)必修 第一册第二章 一元二次函数、方程和不等式2.2 基本不等式第4课时学案及答案,共16页。


    1.基本不等式:ab≤a+b2
    (1)基本不等式成立的条件:a>0,b>0.
    (2)等号成立的条件:当且仅当a=b时取等号.
    (3)其中,a+b2叫做正数a,b的算术平均数,ab叫做正数a,b的几何平均数.
    2.利用基本不等式求最值
    已知x>0,y>0,则
    (1)x+y≥2xy,若xy等于定值p,那么当且仅当x=y时,x+y有最小值2p(简记:积定和最小).
    (2)xy≤x+y22,若x+y等于定值q,那么当且仅当x=y时,xy有最大值q24(简记:和定积最大).
    提醒:利用基本不等式求最值应满足三个条件:“一正、二定、三相等”.
    [常用结论]
    几个重要的不等式
    1a2+b2≥2aba,b∈R; 2ba+ab≥2a,b同号且均不为零;3ab≤a+b22a,b∈R; 4a+b22≤a2+b22a,b∈R. 当且仅当a=b时等号成立.
    一、易错易混辨析(正确的打“√”,错误的打“×”)
    (1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.( )
    (2)若a>0,则a3+1a2的最小值为2a.( )
    (3)函数f (x)=sin x+4sinx,x∈(0,π)的最小值为4.( )
    (4)“x>0且y>0”是“xy+yx≥2”的充要条件.( )
    [答案] (1)× (2)× (3)× (4)×
    二、教材经典衍生
    1.(人教A版必修第一册P45例2改编)设x>0,y>0,且x+y=18,则xy的最大值为( )
    A.80 B.77
    C.81 D.82
    C [xy≤x+y22=81,当且仅当x=y=9时,等号成立.故选C.]
    2.(人教A版必修第一册P48习题2.2T1(1)改编)已知x>2,则x+1x−2的最小值是( )
    A.1 B.2
    C.22 D.4
    D [∵x>2,∴x+1x−2=x-2+1x−2+2≥2x−2·1x−2+2=4,当且仅当x-2=1x−2,即x=3时,等号成立.故选D.]
    3.(多选)(人教A版必修第一册P46练习T2改编)若a,b∈R,则下列不等式成立的是( )
    A.ba+ab≥2 B.ab≤a2+b22
    C.a2+b22≥a+b22 D.2aba+b≤ab
    BC [当ba<0时,A不成立;当ab<0时,D不成立.]
    4.(人教A版必修第一册P46例3(2)改编)一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,当这个矩形的长为________m,宽为________m时,菜园面积最大.
    15 152 [设矩形的长为x m,宽为y m,则x+2y=30(0<x≤18),所以S=xy=12x·2y≤12x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.]
    考点一 利用基本不等式求最值
    配凑法
    [典例1] (1)(2024·河北衡水模拟)若x<23,则函数f (x)=3x+1+93x−2有( )
    A.最大值0 B.最小值9
    C.最大值-3 D.最小值-3
    (2)函数y=x2+2x−1(x>1)的最小值为________.
    (1)C (2)23+2 [ (1)因为x<23,故3x-2<0,f (x)=3x+1+93x−2=3x-2+93x−2+3=-−3x−2+9−3x−2+3≤-2−3x−2·9−3x−2+3=-3,
    当且仅当-(3x-2)=9−3x−2,即x=-13时取等号.故选C.
    (2)因为x>1,所以x-1>0,则
    y=x2+2x−1=x2−2x+1+2x−2+3x−1
    =x−12+2x−1+3x−1
    =(x-1)+3x−1+2≥23+2.
    当且仅当x-1=3x−1,
    即x=3+1时,取等号.]
    常数代换法
    [典例2] 已知x,y都是正数,且x+y=1,则1x+4y的最小值为________;1x+xy的最小值为________.
    9 3 [由x>0,y>0,x+y=1,得1x+4y=(x+y)1x+4y=5+4xy+yx≥5+24xy·yx=9,当且仅当4x2=y2,即x=13,y=23时,等号成立,所以1x+4y的最小值为9.1x+xy=x+yx+xy=1+yx+xy,又x>0,y>0,所以yx+xy≥2yx·xy=2,所以1x+xy≥1+2=3,当且仅当x=y,即x=12,y=12时,等号成立,所以1x+xy的最小值为3.]
    消元法
    [典例3] 已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.
    6 [法一(换元消元法):
    由已知得x+3y=9-xy,
    ∵x>0,y>0,
    ∴x+3y≥23xy,
    ∴3xy≤x+3y22,
    当且仅当x=3y,即x=3,y=1时取等号,
    ∴x+3y+13 x+3y22≥9,
    即(x+3y)2+12(x+3y)-108≥0,
    令x+3y=t,则t>0且t2+12t-108≥0,
    解得t≥6,即x+3y的最小值为6.
    法二(代入消元法):
    由x+3y+xy=9,得x=9−3y1+y,
    ∴x+3y=9−3y1+y+3y=9−3y+3y1+y1+y
    =9+3y21+y=31+y2−61+y+121+y
    =3(1+y)+121+y-6≥231+y·121+y-6
    =12-6=6,
    当且仅当3(1+y)=121+y,即x=3,y=1时等号成立,
    ∴x+3y的最小值为6.]
    【教师备选资源】
    若x>0,y>0且x+y=xy,则xx−1+2yy−1的最小值为________.
    3+22 [因为x>0,y>0且x+y=xy,
    则xy=x+y>y,即有x>1,同理y>1,
    由x+y=xy得,(x-1)(y-1)=1,
    于是得xx−1+2yy−1=1+1x−1+2+2y−1=3+1x−1+2y−1≥3+21x−1·2y−1
    =3+22,当且仅当1x−1=2y−1,
    即x=1+22,y=1+2时取“=”,
    所以xx−1+2yy−1的最小值为3+22.]
    1.利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式,常用手段有添加项、拆项、调整参数、分离参数等.
    2.常数代换法,主要解决形如“已知x+y=t(t为常数),求ax+by的最值”的问题,先将ax+by转化为ax+by·x+yt,再用基本不等式求最值.
    3.当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.
    4.构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.
    [跟进训练]
    1.(1)(多选)(2024·河北沧州模拟)下列函数中,函数的最小值为4的是( )
    A.y=x(4-x)
    B.y=x2+9x2+5
    C.y=1x+11−x(0<x<1)
    D.y=x+4x
    (2)(2024·重庆巴蜀中学模拟)已知x>0,y>0,且xy+x-2y=4,则2x+y的最小值是( )
    A.4 B.5
    C.7 D.9
    (3)若实数x>1,y>12且x+2y=3,则1x−1+12y−1的最小值为________.
    (1)CD (2)C (3)4 [(1)y=x(4-x)≤x+4−x22=4,A错误; y=x2+9x2+5=x2+5+4x2+5,而x2+5=4x2+5无解,B错误;
    ∵x(1-x)≤x+1−x22=14,
    ∴y=1x +11−x=1x1−x≥4,
    当且仅当x=1-x,即x=12时取等号,C正确;
    y=x+4x=x+4x≥2x·4x=4,当且仅当x=2时取等号,D正确.故选CD.
    (2)因为xy+x-2y=4,故(y+1)x=4+2y,
    即x=2y+2+2y+1=2+2y+1,
    故2x+y=4+4y+1+y+1-1≥4+24y+1·y+1-1=7,当且仅当4y+1=y+1,即x=3,y=1时取等号.故选C.
    (3)令x-1=m,2y-1=n,
    则m>0,n>0且m+n=x-1+2y-1=1,
    ∴1x−1+12y−1=1m+1n=1m+1n(m+n)
    =2+nm+mn≥2+2=4,
    当且仅当nm=mn,即m=n=12,x=32,y=34时取“=”.
    ∴1x−1+12y−1的最小值为4.]
    考点二 基本不等式的常见变形应用
    [典例4] (多选)(2023·广东汕头三模)若a>0,b>0,a+b=4,则下列不等式对一切满足条件的a,b恒成立的是( )
    A.ab≤2 B.a+b≤2
    C.a23+b2≥4 D.1a+1b≥1
    ACD [对于A,a>0,b>0,a+b≥2ab,即ab≤a+b2=2,当且仅当a=b=2时等号成立,所以A正确;
    对于B,a>0,b>0,(a+b)2=a+b+2ab=4+2ab≤4+2×2=8,
    又a+b>0,则a+b≤22,当且仅当a=b=2时等号成立,所以B错误;
    对于C,a+b=4,b=4-a>0,所以0<a<4,
    则a23+b2=a23+(4-a)2=4a23-8a+16=43(a-3)2+4≥4,并且a=3时等号成立,所以C正确;
    对于D,a>0,b>0,a+b=4,所以a+b4=1,
    则1a+1b=1a+1b·a+b4=14×2+ba+ab≥14×2+2ba·ab=1,
    当且仅当ba=ab,即a=b=2时等号成立,所以D正确.
    故选ACD.]
    基本不等式的常见变形
    (1)ab≤a+b22≤a2+b22(a∈R,b∈R).
    (2)21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).
    [跟进训练]
    2.(1)(多选)(2022·新高考Ⅱ卷)若实数x,y满足x2+y2-xy=1,则( )
    A.x+y≤1 B.x+y≥-2
    C.x2+y2≤2 D.x2+y2≥1
    (2)当12<x<52时,函数y=2x−1+5−2x的最大值为________.
    (1)BC (2)22 [(1)由x2+y2-xy=1,可得(x+y)2-3xy=1,而xy≤x+y24,
    即1=(x+y)2-3xy≥(x+y)2-3x+y24=x+y24,
    ∴(x+y)2≤4,∴-2≤x+y≤2,故A错误,B正确;
    由x2+y2-xy=1,得x2+y2-1=xy≤x2+y22,
    ∴x2+y2≤2,故C正确,对于D选项,当x=33,y=-33时,满足题设条件,但x2+y2=23,D错误.故选BC.
    (2)由a+b2≤a2+b22,得a+b≤2a2+b22,
    则y=2x−1+5−2x≤22x−1+5−2x2=22,
    当且仅当2x−1=5−2x,即x=32时等号成立.
    【教师备选资源】
    (2024·佛山模拟)若m>n>1,a=lnm·lnn,b=12(ln m+ln n),c=ln m+n2,则( )
    A.aC.bA [∵m>n>1,∴ln m>ln n>0,∴12(ln m+ln n)>lnm·lnn,∴b>a,∵m+n2>mn,∴ln m+n2>ln mn=12ln (mn)=12(ln m+ln n),∴c>b,∴c>b>a.故选A.]
    考点三 基本不等式的实际应用
    [典例5] (2024·山东威海期末)某水产公司拟在养殖室修建三个形状、大小完全相同的长方体育苗池,其平面图如图所示.每个育苗池的底面面积为200 m2,深度为2米,育苗池的四周均设计为2米宽的甬路.设育苗池底面的一条边长为x m(10≤x≤20),甬路的面积为S m2.
    (1)求S与x之间的函数关系式;
    (2)已知育苗池四壁的造价为200元/平方米,池底的造价为600元/平方米,甬路的造价为100元/平方米,若不考虑其他费用,求x为何值时,总造价最低,并求最低造价.
    [解] (1)由题意可得每个育苗池底面的另一边长为200x m,
    则S=(x+4)3×200x+2×4-600=8x+2 400x+32,10≤x≤20.
    (2)设总造价为w元,则w=200×26x+1 200x+600×3×200+100S
    =2 400x+480 000x+360 000+800x+240 000x+3 200
    =3 200x+720 000x+363 200,10≤x≤20,
    其中3 200x+720 000x≥23 200x·720 000x=96 000,
    当且仅当3 200x=720 000x,即x=15∈[10,20]时,等号成立,故w=3 200x+720 000x+363 200≥459 200,
    所以当x=15 m时,总造价最低,最低总造价为459 200元.
    利用基本不等式解决实际问题的注意点
    (1)设变量时,一般把求最大值或最小值的变量定义为函数.
    (2)解题时,一定要注意变量的实际意义对变量取值范围的影响.
    (3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解,如利用f (x)=x+ax(a>0)的单调性.
    (4)在实际问题中利用基本不等式求最值,必须指明等号成立的条件.
    [跟进训练]
    3.(1)单位时间内通过道路上指定断面的车辆数被称为“道路容量”,“道路容量”与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路1 h通过的车辆数N满足关系N=1 000v0.7v+0.3v2+d0,其中d0(单位:m)为安全距离,v为车速(m/s).当安全距离d0取30 m时,该道路1 h“道路容量”的最大值约为( )
    A.135 B.149 C.165 D.195
    (2)(2023·浙江温州三模)某公司计划租地建仓库,已知每月土地费用与仓库到车站的距离成反比,每月货物的运输费用与仓库到车站的距离成正比.经测算,若在距离车站10 km处建仓库,则每月的土地费用与运输费用分别为2万元和8万元.要使每月的两项费用之和最小,仓库和车站的距离应为( )
    A.4 km B.5 km
    C.6 km D.7 km
    (1)B (2)B [(1)由题意得,
    N=1 000v0.7v+0.3v2+30=1 0000.7+0.3v+30v≤1 0000.7+20.3×30≈149,当且仅当0.3v=30v,即v=10时取“=”,所以该道路一小时“道路容量”的最大值约为149.故选B.
    (2)设仓库到车站距离为x,每月土地费用为y1,每月货物的运输费用为y2,
    由题意可设y1=k1x,y2=k2x,
    把x=10,y1=2与x=10,y2=8分别代入上式得k1=20,k2=45,所以y1=20x,y2=45x,
    费用之和y=y1+y2=20x+45x≥220x·4x5=8,
    当且仅当20x=45x,即x=5时等号成立.
    所以当仓库建在离车站5 km处时,两项费用之和最小.故选B.]
    【教师备选资源】
    1.如果一个直角三角形的斜边长等于22,则当这个直角三角形周长取最大值时,其面积为( )
    A.2 B.1
    C.2 D.6
    C [设该直角三角形的斜边为c=22,直角边为a,b,则a2+b2=c2=8,
    因为2ab≤a2+b2,所以a2+b2+2ab≤2(a2+b2),即(a+b)2≤16,当且仅当a=b,且a2+b2=8,即a=b=2时,等号成立.
    因为a>0,b>0,所以a+b≤4,所以a+b的最大值为4,这个直角三角形周长取最大值4+22时,a=b=2,此时三角形的面积为12×2×2=2.故选C.]
    2.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.
    30 [由题意得,一年购买600x次,则总运费与总存储费用之和为6·600x+4x=4900x+x≥8900x·x=240(万元),当且仅当x=30时取等号,故总运费与总存储费用之和最小时,x的值是30.]
    课时分层作业(四) 基本不等式
    一、单项选择题
    1.(2024·山东济南模拟)已知4a2+b2=6,则ab的最大值为( )
    A.34 B.32
    C.52 D.3
    B [由题意得,6=4a2+b2=(2a)2+b2≥2·2a·b,即ab≤32,
    当且仅当2a=b,即a=32,b=3或a=-32,b=-3时等号成立,
    所以ab的最大值为32.故选B.]
    2.(2024·山西晋中期中)已知0A.2 B.4
    C.5 D.6
    B [因为0当且仅当x2=4-x2时取等号,因为03.(2024·哈师大附中模拟)若正数x,y满足x+6y=3,则3yx+1y的最小值为( )
    A.4 B.98
    C.23 D.2
    A [∵x,y为正数,x+6y=3,
    ∴3yx+1y=3yx+x+6y3y=3yx+x3y+2≥23yx·x3y+2=4当且仅当3yx=x3y,即x=1,y=13时取等号,即3yx+1y的最小值为4.故选A.]
    4.下列函数中,函数的最小值为2的是( )
    A.y=x+2x
    B.y=x2+3x2+2
    C.y=ex+e-x
    D.y=lg3x+lgx3(0C [当x<0时,选项A不符合;当0<x<1时,lg3x<0,lgx3<0,选项D不符合;因为y=x2+3x2+2=1x2+2+x2+2>2,故选项B不符合.因为ex>0,e-x>0,所以y=ex+e-x≥2ex·e−x=2,当且仅当ex=e-x,即x=0时,等号成立.故选C.]
    5.(2024·河南名校联考期中)现设计一个两邻边长度分别为a,b的矩形广告牌,其面积为S,且S=a-b+5,则当该广告牌的周长l最小时,S=( )
    A.3 B.4
    C.5 D.6
    A [由题意知a>0,b>0,且ab=a-b+5,所以b=a+5a+1,则该广告牌的周长l=2(a+b)=2a+a+5a+1=2a+1+4a+1≥2×2a+1·4a+1=8,当且仅当a+1=4a+1,即a=1,b=3时,取得等号,此时S=ab=3.
    故选A.]
    6.原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )
    A.第一种方案更划算
    B.第二种方案更划算
    C.两种方案一样
    D.无法确定
    B [设小李这两次加油的油价分别为x元/升、y元/升(x≠y),则
    方案一:两次加油平均价格为40x+40y80=x+y2>xy,
    方案二:两次加油平均价格为400200x+200y=2xyx+y<xy,故无论油价如何起伏,方案二比方案一更划算.故选B.]
    二、多项选择题
    7.下列说法正确的有( )
    A.若x<12,则2x+12x−1的最大值是-1
    B.若x>-2,则x+6x+2≥4
    C.若x>0,y>0,x+2y+2xy=8,则x+2y的最大值是2
    D.若x<1,则x2−x+9x−1有最大值-5
    ABD [对于A,因为x<12,所以2x-1<0,1-2x>0,所以2x+12x−1=(2x-1)+12x−1+1=-1−2x+11−2x+1≤-21−2x·11−2x+1=-1(当且仅当x=0时等号成立),此时2x+12x−1有最大值为-1,故A正确;
    对于B,因为x>-2,所以x+2>0,所以x+6x+2=x+2+4x+2=x+2+4x+2≥2x+2·4x+2=4,当且仅当x+2=4x+2,即x=2时取等号,故B正确;
    对于C,因为x>0,y>0,所以x·2y≤x+2y22,即2xy≤x+2y24,因为x+2y+2xy=8,所以2xy=8-(x+2y),所以8-(x+2y)≤x+2y24,整理得(x+2y)2+4(x+2y)-32≥0,解得x+2y≤-8(舍去)或x+2y≥4(当且仅当x=2y时等号成立),所以x+2y的最小值为4,故C错误;
    对于D,x2−x+9x−1=x−12+x−1+9x−1=-1−x+91−x+1≤-29+1=-5,当且仅当-(x-1)=-9x−1,即x=-2时,等号成立.故D正确.]
    8.(2024·河南信阳模拟)已知正实数x,y满足2x+y=3,则( )
    A.xy≤98 B.4x+2y≥42
    C.x2+y24≤98 D.xy+1x≥23+233
    ABD [因为2x+y=3,且x,y均为正实数,所以由基本不等式得2x+y=3≥22xy,即xy≤98,4x+2y≥24x×2y=222x+y=42,当且仅当2x=y时等号成立,A,B正确;
    由不等式a2+b22≥a+b2,得4x2+y22≥2x+y2,所以4x2+y2≥2x+y22,即x2+y24≥98,当且仅当2x=y时等号成立,C错误或x2+y24=144x2+y2=143−y2+y2=14 2y−322+92 ≥98.
    因为2x+y=3,所以xy+1x=xy+13x(2x+y)=23+xy+y3x≥23+2xy·y3x=23+233,当且仅当y=3x时等号成立,D正确.故选ABD.]
    三、填空题
    9.已知a>0,b>0,且ab=a+b+3,则ab的取值范围为________ ;a+b的取值范围是________.
    [9,+∞) [6,+∞) [因为a>0,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).
    因为a>0,b>0,所以a+b+3=ab ≤a+b22,
    变形,得(a+b)2-4(a+b)-12≥0,解得a+b≥6,当且仅当a=b=3时取等号,即a+b的取值范围是[6,+∞).]
    10.已知正实数x,y满足x+y=1,则x2+y2的最小值为________;若1x+4y≥a恒成立,则实数a的取值范围是________.
    12 (-∞,9] [因为x+y=1,所以xy≤x+y22=14,
    所以x2+y2=(x+y)2-2xy≥1-14×2=12,当且仅当x=y=12时取等号,即x2+y2的最小值为12.
    若a≤1x+4y恒成立,则a≤1x+4ymin,
    因为1x +4y=1x+4y(x+y)=5+yx+4xy≥5+2yx·4xy=9,当且仅当2x=y,即x=13,y=23时等号成立,所以1x+4y的最小值为9,即a≤9,
    故实数a的取值范围是(-∞,9].]
    四、解答题
    11.某公益广告公司拟在一张矩形海报纸(记为矩形ABCD,如图)上设计三个等高的宣传栏(栏面分别为一个等腰三角形和两个全等的直角梯形),宣传栏(图中阴影部分)的面积之和为1 440 cm2.为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为2 cm.当直角梯形的高为多少时,用纸量最少(即矩形ABCD的面积最小)?
    [解] 设直角梯形的高为x cm,
    ∵宣传栏(图中阴影部分)的面积之和为1 440 cm2,且海报上所有水平方向和竖直方向的留空宽度均为2 cm,
    ∴海报宽AD=(x+4)cm,海报长DC=1 440x+8cm,
    故S矩形ABCD=AD·DC=(x+4)1 440x+8=8x+5 760x+1 472≥28x·5 760x+1 472=1925+1 472,
    当且仅当8x=5 760x,即x=125时,等号成立.
    ∴当直角梯形的高为125 cm时,用纸量最少.
    12.甲、乙两地相距1 000 km,货车从甲地匀速行驶到乙地,速度不得超过80 km/h,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是v24(速度v的单位为km/h)元,固定成本为a元.
    (1)将全程运输成本y(单位:元)表示为速度v(单位:km/h)的函数,并指出这个函数的定义域;
    (2)为了使全程运输成本最小,货车应以多大的速度行驶?
    [解] (1)由题意得,可变成本为14v2元,固定成本为a元,所用时间为1 000v小时,
    所以y=1 000v14v2+a=1 00014v+av,定义域为(0,80].
    (2)y=1 00014v+av≥1 000×2a4=1 000a,当14v=av时,得v=2a,因为0所以当0当a>1 600时,货车以80 km/h的速度行驶,全程运输成本最小.
    13.某校决定在学校门口利用一侧原有墙体,建造一间墙高为3 m,底面为24 m2,且背面靠墙的长方体形状的校园警务室.由于此警务室的背面靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左、右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14 400元.设屋子的左、右两面墙的长度均为x m(3≤x≤6).
    (1)当左、右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价;
    (2)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为1 800a1+xx元(a>0),若无论左、右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.
    [解] (1)设甲工程队的总报价为y元,
    则y=3300×2x+400×24x+14 400=1 800x+16x+14 400≥1 800×2x·16x+14 400=28 800,当且仅当x=16x,即x=4时等号成立.
    故当左、右两侧墙的长度为4 m时,甲工程队的报价最低为28 800元.
    (2)由题意可得1 800x+16x+14 400>1 800a1+xx,对任意的x∈[3,6]恒成立,故x+42x>a1+xx,从而x+42x+1>a恒成立,
    令x+1=t,x+42x+1=t+32t=t+9t+6,t∈[4,7].
    令g(t)=t+9t+6,则g(t)在t∈[4,7]上单调递增,故g(t)min=12.25.
    所以a的取值范围为(0,12.25).
    点拨:当f (x)=x+ax(a>0)不能用基本不等式求最值(“=”取不到)时,要用对勾函数的单调性
    相关学案

    高考数学一轮复习第1章第4课时基本不等式学案: 这是一份高考数学一轮复习第1章第4课时基本不等式学案,共19页。

    人教A版 (2019)必修 第一册2.2 基本不等式第2课时导学案: 这是一份人教A版 (2019)必修 第一册2.2 基本不等式第2课时导学案,共16页。

    人教A版 (2019)必修 第一册2.2 基本不等式第1课时导学案: 这是一份人教A版 (2019)必修 第一册2.2 基本不等式第1课时导学案,共14页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map