年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    数学(南京卷)-2024年中考数学考前押题卷

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      数学(南京卷)(全解全析).docx
    • 练习
      数学(南京卷)(参考答案及评分标准).docx
    • 练习
      数学(南京卷)(考试版A4).docx
    数学(南京卷)(全解全析)第1页
    数学(南京卷)(全解全析)第2页
    数学(南京卷)(全解全析)第3页
    数学(南京卷)(参考答案及评分标准)第1页
    数学(南京卷)(参考答案及评分标准)第2页
    数学(南京卷)(参考答案及评分标准)第3页
    数学(南京卷)(考试版A4)第1页
    数学(南京卷)(考试版A4)第2页
    数学(南京卷)(考试版A4)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学(南京卷)-2024年中考数学考前押题卷

    展开

    这是一份数学(南京卷)-2024年中考数学考前押题卷,文件包含数学南京卷全解全析docx、数学南京卷参考答案及评分标准docx、数学南京卷考试版A4docx等3份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
    第Ⅰ卷
    一、选择题(本大题共6个小题,每小题2分,共12分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
    第Ⅱ卷
    二、填空题(本大题共10小题,每小题2分,共20分)
    7.x≠±18. m(x+1)29. 24°10. 1
    11.(12-45)12. 45°13. 21514. 2.25或4.75
    15.m<﹣216. 914
    三、解答题(本大题共11个小题,共88分.解答应写出文字说明,证明过程或演算步骤)
    17.(6分)
    解:解不等式x+12-1<x,得x>﹣1,···················································2分
    解不等式x>3(x﹣1),得x<32,························································4分
    ∴不等式组的解集为﹣1<x<32,
    ∴不等式组的整数解为0,1.····························································6分
    18.(6分)
    解:(1-aa-3)÷a2-3aa2-6a+9
    =a-3-aa-3•(a-3)2a(a-3)
    =-3a,·············································································4分
    当a=23时,原式=-323=-32.···················································6分
    19.(8分)
    解:设每件售价应定为x元,则每件的销售利润为(x﹣40)元,日销售量为20+60-x5×10=(140﹣2x)件,
    依题意得:(x﹣40)(140﹣2x)=(60﹣40)×20,·········································3分
    整理得:x2﹣110x+3000=0,
    解得:x1=50,x2=60(不合题意,舍去).
    答:每件售价应定为50元.······························································6分
    20.(8分)
    解:(1)本次共调查了10÷20%=50名学生,
    故答案为:50;·········································································2分
    (2)B类学生有:50×24%=12(人),
    D类学生有:50﹣10﹣12﹣16﹣4=8(人),
    补全的条形统计图如图所示;
    ············································4分
    (3)m%=16÷50×100%=32%,
    即m=32,············································5分
    类别D所对应的扇形圆心角α的度数是:360°×850=57.6°,······························6分
    故答案为:32,57.6;
    (4)400×16+8+450=224(人),
    即估计该校七年级有224名学生寒假在家做家务的总时间不低于20小时.····················8分
    21.(8分)
    解:(1)∵明明家客厅里装有一种开关(如图所示),从左到右依次分别控制着A(楼梯),B(客厅),C(走廊),D(洗手间)四盏电灯,
    ∴明明任意按下一个开关,打开的不一定是楼梯灯,打开的不可能是卧室灯,打开的可能是客厅灯,打开走廊灯的概率是14,
    故选项A、B、D不符合题意,选项C符合题意,
    故选:C;············································································3分
    (2)画树状图得:
    ················································6分
    共有12个等可能的结果,客厅灯和走廊灯亮的结果有2个,
    ∴客厅灯和走廊灯亮的概率为212=16.···················································8分
    22.(8分)
    解:(1)如图,点E、F为所作;
    ······················································2分
    (2)∵四边形ABCD为矩形,
    ∴CD=AB=3,AD=BC=BE,∠A=∠D=90°,
    在Rt△DEF中,∵sin∠DEF=DFEF=35,
    ∴设DF=3x,EF=5x,
    ∴DE=4x,
    ∵FC=FE=5x,
    ∴CD=5x+3x=3,
    解得x=38,··········································································5分
    ∴DE=4x=32,
    设BC=m,则BE=AD=m,
    ∴AE=m-32,
    在Rt△ABE中,32+(m-32)2=m2,
    解得m=154,
    即BC的长为154.······································································8分
    故答案为:154.
    23.(8分)
    (1)证明:∵EF∥AC,
    ∴∠EFC=∠OCF,
    在△ODC和△EDF中,
    ∠EFC=∠OCFDF=DC∠FDE=∠CDO,
    ∴△ODC≌△EDF(ASA),····························································2分
    (2)解:四边形OCEF是正方形,理由如下,
    由(1)可得,△ODC≌△EDF(ASA);
    ∴OC=EF,且EF∥AC,
    ∴四边形OCEF是平行四边形,························································4分
    ∴∠FEO=∠EOC,OD=ED,
    ∵OD=DC,且∠BEC=45°,
    ∴∠DEC=∠DCE=45°,
    ∴∠CDE=180°﹣45°﹣45°=90°,即OE⊥CF,
    ∴平行四边形OCEF是菱形,··························································6分
    ∵△CDE是等腰直角三角形,且OE=CF,
    ∴菱形OCEF是正方形.······························································8分
    24.(8分)
    解:过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.
    则四边形GFED是矩形.
    ∴DE=FG=50cm,GD=EF.
    在Rt△GAB中,∵AB=25cm,
    ∴sin37°=GBAB,cs37°=GAAB,
    ∴GB≈25×0.60=15(cm),GA≈25×0.80=20(cm).
    ∴BF=DF﹣BG=50﹣15=35(cm).·····················································2分
    ∵∠ABC=72°,∠D'AB=37°,
    ∴∠GBA=90°﹣∠D′AB=53°.
    ∴∠CBF=180°﹣∠GBA﹣∠ABC=55°.
    ∴∠BCF=90°﹣∠CBF=35°.························································4分
    ∵tan35°=BFCF,
    ∴CF≈350.70=50(cm).·······························································6分
    ∴FE=CE+CF=50+130=180(cm).
    ∴GD=FE=180(cm),
    ∴AD=GD﹣AG=180﹣20=160(cm).·················································8分
    答:安装师傅应将支架固定在离地面160cm的位置.
    25.(8分)
    解:(1)△BCD与△BAC相似,理由:
    连接OC,如图,
    ∵BC为⊙O的切线,
    ∴OC⊥BC,
    ∴∠OCD+∠DCB=90°.
    ∵AD为直径,
    ∴∠ACD=90°,
    ∴∠A+∠ADC=90°,
    ∵OC=OD,
    ∴∠OCD=∠ODC,
    ∴∠DCB=∠A.
    ∵∠CBD=∠ABC,
    ∴△BCD∽△BAC;···································································3分
    (2)由(1)知:∠A=∠BCD,
    ∴tan∠A=tan∠BCD=12,
    ∵∠ACD=90°,
    ∴tan∠A=CDAC=12.
    ∵△BCD∽△BAC,
    ∴BDBC=CDAC=12.
    ∵⊙O的半径为3,
    ∴AD=6.·············································································5分
    设BD=x,则BC=2x,OB=3+x,
    ∵OC2+BC2=OB2,
    ∴32+(2x)2=(3+x)2,
    解得:x=0(不合题意,舍去)或x=2.
    ∴BC=2x=4.·······································································8分
    26.(10分)
    解:(1)∵抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),
    ∴可设y=a(x+2)2+9,
    又∵抛物线过点B(0,5),代入得:
    5=4a+9,
    ∴a=﹣1,
    ∴y=﹣(x+2)2+9
    =﹣x2﹣4x+5,
    ∴抛物线的解析式为y=﹣x2﹣4x+5;·····················································2分
    (2)∵抛物线y=﹣x2﹣4x+5与坐标轴分别交于A、B、C三点,且B的坐标为(0,5),
    ∴当y=0时,﹣x2﹣4x+5=0,
    解得x1=﹣5,x2=1,
    ∴A(1,0),C(﹣5,0),
    又∵D(﹣2,9),
    ∴直线BC的解析式为y=x+5;
    设直线CD的解析式为y=kx+b,将C(﹣5,0),D(﹣2,9)代入,得:
    0=-5k+b9=-2k+b,
    解得:k=3b=15,
    ∴直线CD的解析式为y=3x+15.························································4分
    设点P的坐标为(x,0),则G(x,x+5),H(x,3x+15).
    ∴S△CGH=12HG×CP
    =12(5+x)(3x+15﹣x﹣5)
    =12(5+x)(2x+10)
    =(5+x)(x+5)
    =(x+5)2,
    设抛物线的对称轴交直线BC于点K,如图:
    ∵顶点D的坐标为(﹣2,9),
    ∴对称轴为直线x=﹣2,
    ∴K(﹣2,3),
    ∴DK=9﹣3=6,
    ∴S△BCD=S△DKC+S△DKB
    =12×6×3+12×6×2
    =15,
    ∴若线段HG把△CBD的面积分成相等的两部分,则(x+5)2=12×15,
    解得:x1=30-102,x2=-10-302(舍),
    ∴P(30-102,0);····································································6分
    (3)如图,设点M的坐标为(m,m+5),
    ∵C(﹣5,0),D(﹣2,9),
    ∴CD=(-5+2)2+(9-0)2=310,
    当CD与DM是菱形的两边时,则CD=DM,
    ∴310=(-2-m)2+(9-m-5)2,
    解得m1=﹣5(不合题意,舍去),m2=7,
    ∴点M(7,12);·······································································8分
    当CD与CM''是菱形的两边时,则CD=CM'',
    ∴310=(-5-m)2+(m+5)2,
    解得m=±35-5,
    ∴点M(35-5,35)或点M(﹣35-5,﹣35);······································9分
    当DM'与CM'是菱形的两边时,则CM'=DM',
    ∴(m+5)2+(m+5)2=(m+2)2+(m+5-9)2,
    解得m=-54,
    ∴点M(-54,154).····································································10分
    综上所述,点M的坐标为(7,12)或(35-5,35)或(﹣35-5,﹣35)或(-54,154).
    27.(10分)
    解:(1)∵四边形ABCD是正方形,
    ∴∠ABC=∠D=90°,AB=BC=CD=AD,
    ∴∠BAC=∠ACB=45°,∠ACD=∠DAC=45°,
    ∵EF⊥AC,
    ∴∠FEC=90°,
    ∴∠EFC=90°﹣∠ACF=90°﹣45°=45°,
    ∴∠EFC=∠ECF=∠ECG,
    ∴EF=EC,
    ∵BE⊥EG,
    ∴∠BEG=90°,
    ∴∠BEG=∠FEG,
    ∴∠BEC+∠CEG=∠BEG+∠FEB,
    ∴∠FEB=∠CEG,
    ∴△BEF≌△GEC(ASA),
    ∴BF=CG,
    故答案为:BF=CG;·································································2分
    (2)∵四边形ABCD是矩形,
    ∴∠BCD=90°,
    ∴∠BCE+∠ACD=90°,
    ∵EF⊥AC,
    ∴∠FEC=90°,
    ∴∠BCE+∠EFB=90°,∠FEB+∠BEC=90°,
    ∴∠EFB=∠ECG,
    又∵BE⊥EG,
    ∴∠CEG+∠BEC=90°,
    ∴∠FEB=∠CEG,
    ∴△BFE∽△GCE,
    ∴BFCG=EFEC,·········································································4分
    在Rt△ABC中,tan∠ACB=ABBC=23,
    ∴tan∠ECF=23,
    ∴EFEC=23,
    ∴BFCG=23;···········································································6分
    (3)过点E作EM⊥CD于M,EN⊥BC于点N,
    ∵E为AC的中点,
    ∴AC=EC,
    ∵EM⊥DC,AD⊥DC,
    ∴EM∥AD,
    ∴CMDM=ECAE,
    ∴DM=CM=1,·····································································8分
    同理可得BN=CN=32,
    由(2)知△BFE∽△GCE,
    ∴∠EBF=∠G,
    ∴tan∠EBN=ENBN=23=tanG=EMGM,
    ∴32CG+1=23,
    ∴CG=54,
    ∴S△CEG=12CG•EM=12×54×32=1516.·····················································10分1
    2
    3
    4
    5
    6
    B
    B
    D
    C
    C
    C

    相关试卷

    2023年中考考前押题密卷:数学(江苏南京卷)(参考答案):

    这是一份2023年中考考前押题密卷:数学(江苏南京卷)(参考答案),共13页。

    2023年中考考前押题密卷:数学(江苏南京卷)(全解全析):

    这是一份2023年中考考前押题密卷:数学(江苏南京卷)(全解全析),共26页。

    2023年中考考前押题密卷:数学(江苏南京卷)(考试版)A3:

    这是一份2023年中考考前押题密卷:数学(江苏南京卷)(考试版)A3,共5页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map