


2023-2024学年江西省上饶市第六中学九上数学期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.下列四个几何体中,主视图是三角形的是( )
A. B. C. D.
2.如图,在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A.B.
C.D.
3.若|m|=5,|n|=7,m+n<0,则m﹣n的值是( )
A.﹣12或﹣2B.﹣2或12C.12或2D.2或﹣12
4.如图,二次函数y=ax1+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y1)是函数图象上的两点,则y1<y1;④﹣<a<﹣.其中正确结论有( )
A.1个B.1个C.3个D.4个
5.下列图形中不是中心对称图形的是( )
A.B.C.D.
6.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的是( )
A.①②④B.①③④C.②③④D.①③
7.为了估计湖里有多少条鱼,小华从湖里捕上条并做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得条,发现其中带标记的鱼条,通过这种调查方式,小华可以估计湖里有鱼( )
A.条B.条C.条D.条
8.方程的解是( )
A.x=0B.x=1C.x=0或x=1D.x=0或x=-1
9.如图,四边形内接于, 为延长线上一点,若,则的度数为( )
A.B.C.D.
10.对于反比例函数,如果当≤≤时有最大值,则当≥8时,有( )
A.最大值B.最小值C.最大值=D.最小值=
11.如果(m+2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( )
A.2或-2B.2C.-2D.0
12.如图,在中,,将绕点旋转到'的位置,使得,则的大小为( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.
14.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为___.
15.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.
16.对于实数a,b,定义运算“⊗”: ,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣1x+8=0的两个根,则x1⊗x2=________.
17.如果二次根式有意义,那么的取值范围是_________.
18.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.
三、解答题(共78分)
19.(8分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;
(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?
20.(8分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)请直接写出不等式≥k2x+b的解.
21.(8分)如图,已知抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴及点B的坐标;
(3)设点P为该抛物线对称轴上的一个动点,是否存在点P使△BPC为直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.
22.(10分)如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.
(1)求证:是的切线;
(2)若,,求的边上的高.
(3)在(2)的条件下,求的面积.
23.(10分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)
24.(10分)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).
25.(12分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
26.(12分)如图,在平行四边形中,为边上一点,平分,连接,已知,.
求的长;
求平行四边形的面积;
求.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、C
4、D
5、B
6、B
7、B
8、C
9、D
10、D
11、B
12、B
二、填空题(每题4分,共24分)
13、
14、1.
15、
16、±4
17、x≤1
18、
三、解答题(共78分)
19、 (1)w=-10x2+700x-10000(20≤x≤32);(2)当销售单价定为32元/件时,每月可获得最大利润,最大利润是2160元.
20、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
21、(1);(2)x=-1;(-3,0);(3)存在;P的坐标为或或或.
22、(1)见解析;(2)4.5;(3)27
23、A处与灯塔B相距109海里.
24、 .
25、(1);(2)x>1;(3)P(﹣,0)或(,0)
26、 (1)10;(2)128;(3)
江西省上饶上饶县联考2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份江西省上饶上饶县联考2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了已知点A等内容,欢迎下载使用。
重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份重庆市实验中学2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是随机事件的是等内容,欢迎下载使用。
江西省安远县三百山中学2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份江西省安远县三百山中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了两三角形的相似比是2,已知等内容,欢迎下载使用。