2023-2024学年广东省深圳市文锦中学九上数学期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.关于x的一元二次方程x2﹣(k+3)x+2k+2=0的根的情况,下面判断正确的是( )
A.有两个相等的实数根B.有两个不相等的实数根C.有两个实数根D.无实数根
2.若,那么的值是( )
A.B.C.D.
3.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A.30°B.60°C.30°或150°D.60°或120°
4.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD等于( )
A.75°B.95°C.100°D.105°
5.在平面直角坐标系中,将抛物线绕着原点旋转,所得抛物线的解析式是( )
A.B.
C.D.
6.圆锥的母线长为4,底面半径为2,则它的侧面积为( )
A.4πB.6πC.8πD.16π
7.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“治”相对的面上的汉字是( )
A.全B.面C.依D.法
8.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cs24°≈0.91,tan24°=0.45)( )
A.21.7米B.22.4米C.27.4米D.28.8米
9.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( )
①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.
A.4B.3C.2D.1
10.下列说法正确的是( ).
A.“购买1张彩票就中奖”是不可能事件
B.“概率为0.0001的事件”是不可能事件
C.“任意画一个三角形,它的内角和等于180°”是必然事件
D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次
11.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )
A.6 B. C.9 D.
12.在圆,平行四边形、函数的图象、的图象中,既是轴对称图形又是中心对称图形的个数有( )
A.0B.1C.2D.3
二、填空题(每题4分,共24分)
13.关于x的一元二次方程有两个不相等的实数根,则实数a的取值范围是______.
14.将抛物线y=x2+2x向右平移1个单位后的解析式为_____.
15.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为________小时(用根号表示).
16.如图,把直角尺的角的顶点落在上,两边分别交于三点,若的半径为.则劣弧的长为______.
17.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.
18.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是和,则动力(单位:)关于动力臂(单位:)的函数解析式为______.
三、解答题(共78分)
19.(8分)有这样一个问题,如图1,在等边中,,为的中点,,分别是边,上的动点,且,若,试求的长.爱钻研的小峰同学发现,可以通过几何与函数相结合的方法来解决这个问题,下面是他的探究思路,请帮他补充完整.
(1)注意到为等边三角形,且,可得,于是可证,进而可得,注意到为中点,,因此和满足的等量关系为______.
(2)设,,则的取值范围是______.结合(1)中的关系求与的函数关系.
(3)在平面直角坐标系中,根据已有的经验画出与的函数图象,请在图2中完成画图.
(4)回到原问题,要使,即为,利用(3)中的图象,通过测量,可以得到原问题的近似解为______(精确到0.1)
20.(8分)如图,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P,⊙P 交 CE、BD、BC 交于 F、G、H(任意两点不重合),
(1)半径 BP 的长度范围为 ;
(2)连接 BF 并延长交 CD 于 K,若 tan KFC 3 ,求 BP;
(3)连接 GH,将劣弧 HG 沿着 HG 翻折交 BD 于点 M,试探究是否为定值,若是求出该值,若不是,请说明理由.
21.(8分)(1)计算:.
(2)解方程:.
22.(10分)有四组家庭参加亲子活动,A、B、C、D分别代表四个家长,他们的孩子分别是a、b、c、d,若主持人随机从家长、孩子中各选择一个,请你用树状图或列表的方法求出选中的两人刚好是同一个家庭的概率.
23.(10分)解方程:3x(1x+1)=4x+1.
24.(10分)如图,已知在平面直角坐标系xOy中,直线y=x+与x轴交于点A,与y轴交于点B,点F是点B关于x轴的对称点,抛物线y=x2+bx+c经过点A和点F,与直线AB交于点C.
(1)求b和c的值;
(2)点P是直线AC下方的抛物线上的一动点,连结PA,PB.求△PAB的最大面积及点P到直线AC的最大距离;
(3)点Q是抛物线上一点,点D在坐标轴上,在(2)的条件下,是否存在以A,P,D,Q为顶点且AP为边的平行四边形,若存在,直接写出点Q的坐标;若不存在,说明理由.
25.(12分)已知二次函数中,函数与自变量的部分对应值如下表:
(1)求该二次函数的表达式;
(2)当时,的取值范围是 .
26.(12分)寒冬来临,豆丝飘香,豆丝是鄂州民间传统美食;某企业接到一批豆丝生产任务,约定这批豆丝的出厂价为每千克4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,新工人李明第1天生产100千克豆丝,由于不断熟练,以后每天都比前一天多生产20千克豆丝;设李明第x天(,且x为整数)生产y千克豆丝,解答下列问题:
(1)求y与x的关系式,并求出李明第几天生产豆丝280千克?
(2)设第x天生产的每千克豆丝的成本是p元,p与x之间满足如图所示的函数关系;若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、D
4、D
5、A
6、C
7、C
8、A
9、B
10、C
11、C
12、C
二、填空题(每题4分,共24分)
13、且
14、y=x2﹣1.
15、
16、
17、3
18、
三、解答题(共78分)
19、(1);(2),;(3)答案见解析;(4)1.1.
20、(1);(2)BP=1;(3)
21、(1)5;(2)
22、概率为.
23、=,= −.
24、(1)b=,c=﹣;(2),;(3)点Q的坐标为:(﹣1﹣,)或(,﹣)或(﹣1+,)或(,)或(﹣,﹣).
25、(1)或;(2)或
26、(1),第10天生产豆丝280千克;(2)当x=13时,w有最大值,最大值为1.
···
···
···
···
2023-2024学年广东省深圳市罗湖区文锦中学九上数学期末联考试题含答案: 这是一份2023-2024学年广东省深圳市罗湖区文锦中学九上数学期末联考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年广东省深圳市福田区九上数学期末学业质量监测试题含答案: 这是一份2023-2024学年广东省深圳市福田区九上数学期末学业质量监测试题含答案,共7页。试卷主要包含了如图的中,,且为上一点等内容,欢迎下载使用。
2023-2024学年广东省深圳高级中学数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年广东省深圳高级中学数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

