


陕西省兴平市初级中学2023-2024学年数学九年级第一学期期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如果将抛物线向右平移1个单位,那么所得新抛物线的顶点坐标是( )
A.B.C.D.
2.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是( )
A.100°B.110°C.120°D.130°
3.如图,该几何体的主视图是( )
A.B.C.D.
4.二次函数图象如图,下列结论:①;②;③当时,;④;⑤若,且,.其中正确的结论的个数有( )
A.1B.2C.3D.4
5.如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 AB ,则点 B 的对应点 B′的坐标是( )
A.(-4 , 1)B.( -1, 2)C.(4 ,- 1)D.(1 ,- 2)
6.如图,在中,,则的值为( )
A.B.C.D.
7.某闭合并联电路中,各支路电流与电阻成反比例,如图表示该电路与电阻的函数关系图象,若该电路中某导体电阻为,则导体内通过的电流为( )
A.B.C.D.
8.如图是一根电线杆在一天中不同时刻的影长图,试按其天中发生的先后顺序排列,正确的是( )
A.①②③④B.④①③②C.④②③①D.④③②①
9.方程x2﹣2x+3=0的根的情况是( )
A.有两个相等的实数根B.只有一个实数根
C.没有实数根D.有两个不相等的实数根
10.如图所示的几何体的主视图为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是______.
12.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为_____.
13.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离出发点的水平距离为__m.
14.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.
15.如图,已知等边的边长为,,分别为,上的两个动点,且,连接,交于点,则的最小值_______.
16.反比例函数图像经过点(2,-3),则它的函数表达式是 .
17.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是_____.
18.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是_____.
三、解答题(共66分)
19.(10分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA
与⊙O的另一个交点为E,连结AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的长.
20.(6分)解方程:x(x﹣3)+6=2x.
21.(6分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)
已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.
(1)乙同学这5次数学练习成绩的平均数为 分,方差为 分;
(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.
22.(8分)如图,已知中,,是的中点,.
求证:四边形是菱形.
23.(8分)在边长为1个单位长度的正方形网格中,建立如图所示的平面直角坐标系,的顶点都在格点上,请解答下列问题:
(1)作出向左平移4个单位长度后得到的,并写出点的坐标;
(2)作出关于原点O对称的,并写出点的坐标;
(3)已知关于直线L对称的的顶点的坐标为(-4,-2),请直接写出直线L的函数解析式.
24.(8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).
25.(10分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.
(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的与x之间的函数表达式;
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
26.(10分)如图,点为上一点,点在直径的延长线上,且,过点作的切线,交的延长线于点.
判断直线与的位置关系,并说明理由;
若,求:①的半径,②的长.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、D
4、C
5、D
6、D
7、B
8、B
9、C
10、B
二、填空题(每小题3分,共24分)
11、1﹣1.
12、22015π
13、.
14、1
15、
16、.
17、.
18、(6,6).
三、解答题(共66分)
19、(1)见解析(2)
20、x1=2,x2=1.
21、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;
乙的数学成绩在100分以上(含100分)的次数更多.
22、详见解析.
23、(1)图详见解析,C1(-1,2); (2)图详见解析,C2(-3,-2);(3)
24、该段运河的河宽为.
25、(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)y=﹣0.2x+60(0≤x≤90);(3)当该产品产量为75kg时,获得的利润最大,最大值为1.
26、 (1) 直线与相切;见解析(2)①3;②6.
测试日期
11月5日
11月20日
12月5日
12月20日
1月3日
甲
96
97
100
103
104
乙
100
95
100
105
100
陕西省西安市高新第二初级中学2023-2024学年九年级数学第一学期期末调研试题含答案: 这是一份陕西省西安市高新第二初级中学2023-2024学年九年级数学第一学期期末调研试题含答案,共10页。试卷主要包含了答题时请按要求用笔,已知点P,下列各组图形中,一定相似的是等内容,欢迎下载使用。
陕西省兴平市华兴中学2023-2024学年数学九上期末经典模拟试题含答案: 这是一份陕西省兴平市华兴中学2023-2024学年数学九上期末经典模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年广东省初级中学数学九年级第一学期期末联考模拟试题: 这是一份2023-2024学年广东省初级中学数学九年级第一学期期末联考模拟试题,共16页。试卷主要包含了的值为,关于x的方程,若,设,,,则、、的大小顺序为,下列图形中,成中心对称图形的是等内容,欢迎下载使用。