


所属成套资源:人教版数学九年级上册单元检测卷(含答案)
2023年人教版数学九年级上册《概率初步》单元复习卷(基础版)(含答案)
展开
这是一份2023年人教版数学九年级上册《概率初步》单元复习卷(基础版)(含答案),共10页。
2023年人教版数学九年级上册《概率初步》单元复习卷(基础版) 一 、选择题(本大题共12小题)1.下列事件中,必然事件是( )A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数2.下列说法正确的是( )A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是43.下列说法正确的是( )A.了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查 B.甲、乙两人跳远成绩的方差分别为S甲2=3,S乙2=4,说明乙的跳远成绩比甲稳定C.一组数据2,2,3,4的众数是2,中位数是2.5 D.可能性是1%的事件在一次试验中一定不会发生4.现有四个看上去完全一样的纸团,每个纸团里面分别写着数字1,2,3,4,现任意抽取一个纸团,则抽到的数字是4的概率是( )A. B. C. D.1 5.市举办了首届中学生汉字听写大会.从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )A. B. C. D.16.在一个不透明的袋中装有6个只有颜色不同的小球,其中3个红球、2个白球和1个黄球.从袋中任意摸出一个球,是红球的概率为( )A. B. C. D. 7.如图为一水平放置的转盘(转盘固定不动),使劲转动其指针,并让它自由停下,下面叙述正确的是( )A.指针停在B区比停在A区的机会大B.指针停在三个区的机会一样大C.指针停在哪个区与转盘半径大小有关D.指针停在哪个区可以随心所欲8.如图,在4×4正方形网格中,任意选取一个白色的小正方形并涂上阴影,使图中阴影部分的图形构成一个轴对称图形的概率是( )A. B. C. D.9.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )A. B. C. D.10.小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )A.摸到黄球的概率为,红球的概率为B.摸到黄、红、白球的概率都为C.摸到黄球的概率为,红球的概率为,白球的概率为D.摸到黄球的概率为,摸到红球、白球的概率都是11.一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?( )A.8只 B.12只 C.18只 D.30只12.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:根据上表可知该队员一次投篮命中的概率大约是( )A.0.9 B.0.8 C.0.7 D.0.72二 、填空题(本大题共6小题)13.请你写出一个必然事件 .14.在一个不透明的袋中有5个红球、4个黄球、3个白球,每个球除颜色外,其他都相同,从中任意摸出一个球,摸出 球的可能性最大.15.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是 .16.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是 .17.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是 .18.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到0.1).投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)0.560.600.520.520.490.510.50 三 、解答题(本大题共7小题)19.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的? 20.在一个不透明的袋中装有2个黄球、3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率.(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数. 21.如图,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为. 22.一个不透明的袋中中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.从这个袋子中任意摸一只球,记下所标数字,不放回,再从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用”画树状图“或”列表“的方法写出过程) 23.为了解某校九年级男生1 000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D,C,B,A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=________,b=________,c=________;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为________度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1 000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率. 24.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分. 25.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?
0.答案1.D2.B.3.C.4.C.5.C6.B.7.A8.A9.C.10.D11.B.12.D.13.答案为:太阳从东方升起14.答案为:红.15.答案为:.16.答案为:.17.答案为:.18.答案为:0.5.19.解:(1)A同学获胜可能性为,B同学获胜可能性为,因为,当x=3时,B同学获胜可能性大;(2)游戏对双方公平必须有:,解得:x=4,答:当x=4时,游戏对双方是公平的.20.解:(1)∵共有10个球,其中有2个黄球,∴P(黄球)= =.(2)设后来放入x个红球,根据题意得=,解得x=5.∴后来放入袋中的红球有5个.21.解:(1)P(指针指向奇数区)=.(2)答案不唯一.如:自由转动的转盘停止时,指针指向大于2的区域.22.解:列表得: 2352﹣﹣﹣3252323﹣﹣﹣5352535﹣﹣﹣所有等可能的情况有6种,其中组成两位数是5的倍数的情况有2种,则所组成的两位数是5的倍数的概率为.23.解:(1)2 45 20(2)72(3)画树状图如下.共有12种等可能的结果,选中的两名同学恰好是甲、乙的结果有2种,故P(选中的两名同学恰好是甲、乙)==.24.解:(1)第6名学生命中的个数为5×40%=2,则第6号学生的积分为2分,补全条形统计图如下:(2)这6名学生中,命中次数多于5×50%=2.5次的有2、3、4、5号这4名学生,∴选上命中率高于50%的学生的概率为=;(3)由于前6名学生积分的众数为3分,∴第7号学生的积分为3分或0分.25.解:(1)总人数=15÷25%=60(人).A类人数=60-24-15-9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200人,200÷20=10个,∴开设10个“实践活动类”课程的班级比较合理.
