





所属成套资源:九年级数学上册同步精品讲义(浙教版)
第4课 二次函数的实际应用-九年级数学上册同步精品讲义(浙教版)
展开
第4课 二次函数的实际应用 学习目标1.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.2.会运用二次函数解决实际问题中的最值问题 知识点01 根据实际问题列二次函数表达式根据实际问题确定二次函数表达式关键是读懂题意,建立二次函数的数学模型来解决问题. 知识点02 二次函数的实际应用在实际生活中存在很多抛物线型问题,还有很多“利润最大”“用量最少”“面积最大”“路程最短”等问题,它们都会用到二次函数的图象和性质来描述问题,解决这类问题的步骤:(1)设出两个变量;(2)写出函数表达式或画出图象;(3)确定自变量的取值范围;(4)利用二次函数的性质求解;(5)用求得的解来解释实际问题. 考点01 根据实际问题列二次函数表达式【典例1】据省统计局公布的数据,合肥市2021年一月GDP总值约为6百亿元人民币,若合肥市三月GDP总值为y百亿元人民币,平均每个月GDP增长的百分率为x,则y关于x的函数表达式是( )A.y=6(1+2x) B.y=6(1﹣x)2 C.y=6(1+x)2 D.y=6+6(1+x)+6(1+x)2【即学即练1】矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及自变量x的取值范围是 .考点02 利用二次函数解决最值问题【典例1】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【即学即练2】数学课外活动小组进行如下操作实验,把一根长20m的铁丝剪成两段.(1)把每段首尾相连各围成一个正方形.要使这两个正方形的面积之和等于13m2,应该怎么剪这根铁丝?(2)若把剪成两段的铁丝围成两个圆,两圆面积之和的最小值是多少? 题组A 基础过关练1.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为( )A.y=100(1﹣x) B.y=100﹣x2 C.y=100(1+x)2 D.y=100(1﹣x)22.商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价上涨1元,则每星期就会少卖10件.每件商品的售价上涨x元(x为正整数),每星期销售的利润为y元,则y与x的函数关系式为( )A.y=10(200﹣10x) B.y=200(10+x) C.y=10(200﹣10x)2 D.y=(10+x)(200﹣10x)3.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y平方米,则y关于x的函数关系式为( )A.y=x(40﹣x) B.y=x(18﹣x) C.y=x(40﹣2x) D.y=2x(40﹣2x)4.为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为x,第一季度的总产值为y(亿元),则y关于x的函数解析式为 .5.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为( )A.21元 B.22元 C.23元 D.24元6.阳光超市里销售的一种水果,每千克的进价为10元,销售过程中发现,每天销量y(kg)与销售单价x(元)之间满足一次函数y=﹣x+50的关系.若不计其他成本(利润=售价﹣进价),则该超市销售这种水果每天能够获得的最大利润是 元.7.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=x0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.8.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)607080周销售量y(件)1008060周销售利润w(元)200024002400(1)求y关于x的函数解析式;(2)直接写出该商品的进价,并求出该商品周销售利润的最大值;(3)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是2000元,求m的值.题组B 能力提升练9.为方便市民进行垃圾分类投放,某环保公司第一个月投放a个垃圾桶,计划第三个月投放垃圾桶y个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x,那么y与x的函数关系是( )A.y=a(1+x)2 B.y=a(1﹣x)2 C.y=(1﹣x)2+a D.y=x2+a10.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离OB的长度为( )A.7m B.7.5m C.8m D.8.5m11.如图,某公司准备在一个等腰直角三角形ABC的绿地上建造一个矩形的休闲书吧PMBN,其中点P在AC上,点NM分别在BCAB上,记PM=x,PN=y,图中阴影部分的面积为S,若NP在一定范围内变化,则y与x,S与x满足的函数关系分别是( )A.反比例函数关系,一次函数关系 B.二次函数关系,一次函数关系 C.一次函数关系,反比例函数关系 D.一次函数关系,二次函数关系12.某种爆竹点燃后升空,并在最高处燃爆.该爆竹点燃后离地高度h(单位:m)关于离地时间t(单位:s)的函数解析式是h=20t﹣5t2,其中t的取值范围是( )A.t≥0 B.0≤t≤2 C.2≤t≤4 D.0≤t≤413.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?14.为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?题组C 培优拔尖练 15.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的函数表达式为y=ax2+bx+c(a≠0),若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是( )A.第7秒 B.第9秒 C.第11秒 D.第13秒16.如图,在长为20m、宽为14m的矩形花圃里建有等宽的十字形小径,若小径的宽不超过1m,则花圃中的阴影部分的面积有( )A.最小值247 B.最小值266 C.最大值247 D.最大值26617.n个球队参加篮球比赛,每两队之间进行一场比赛,比赛的场次数m与球队数n(n≥2)之间的函数关系是 .18.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额﹣总成本).19.公路上正在行驶的甲车发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)直接写出s关于t的函数关系式 和v关于t的函数关系式 (不要求写出t的取值范围)(2)当甲车减速至9m/s时,它行驶的路程是多少?(3)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?20.某商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/千克)与时间t(天)之间的函数关系式为,已知日销售量y(千克)与时间t(天)之间的变化规律符合一次函数关系,且y与t的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(1)试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?