搜索
    上传资料 赚现金
    英语朗读宝

    人教A版高中数学必修第二册综合素养评价(一)平面向量与正、余弦定理含答案 试卷

    人教A版高中数学必修第二册综合素养评价(一)平面向量与正、余弦定理含答案第1页
    人教A版高中数学必修第二册综合素养评价(一)平面向量与正、余弦定理含答案第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版高中数学必修第二册综合素养评价(一)平面向量与正、余弦定理含答案

    展开

    这是一份人教A版 (2019)必修 第二册全册综合达标测试,共5页。试卷主要包含了已知A,B,C等内容,欢迎下载使用。
    综合素养评价(一)平面向量与正、余弦定理1.已知向量a(1,-2)b(m,4),且ab,那么2ab等于     (  )A(4,0)        B(0,4)C(4,-8)  D(4,8)解析:C 由ab42m0,所以m=-2,2ab(2,-4)(m,4)(2m,-8)(4,-8)2.已知向量a(1)b是不平行于x轴的单位向量,且a·b,则b等于   (  )A.  BC.  D(1,0)解析:B 设b(xy),其中y0a·bxy.解得b.故选B.3.在ABC中,若abA2B,则cos B等于       (  )A.  BC.  D.解析:B 由正弦定理,得ab可化为.A2Bcos B.4.已知向量a(m1,1)b(m,-2),则m2ab              (  )A.充分不必要条件  B.必要不充分条件C.充要条件  D.既不充分不必要条件解析:A 当m2时,a(1,1)b(2,-2)所以a·b(1,1)·(2,-2)220所以ab,充分性成立;当ab时,a·b(m1,1)·(m,-2)m(m1)20,解得m2m=-1,必要性不成立.所以m2ab的充分不必要条件.5.在ABC中,内角ABC对应的边分别为abcc2absin Basin Aasin C,则sin B的值为                                                                                                                                (  )A.  BC.  D.解析:C 由正弦定理,得b2a2ac,又c2a,所以b22a2,所以cos B,所以sin B.6.已知A(3,0)B(0,2)O为坐标原点,点CAOB内,||2,且AOC,设λ (λR),则λ的值为(  )A1  BC.  D.解析:D CCEx轴于点E.||2,且AOC,得|OE||CE|2,所以     λ,即λ所以(2,0)λ(3,0),故λ.7.在ABC中,三个顶点的坐标分别为A(3t)B(t,-1)C(3,-1),若ABC是以B为直角顶点的直角三角形,则t________.解析:由已知,得·0,则(3tt1)·(3t,0)0(3t)(3t)0,解得t3t=-3,当t=-3时,点B与点C重合,舍去.故t3.答案:38.已知e为一个单位向量,ae的夹角是120°.ae上的投影为-2e,则|a|________.解析:|a|·cos 120°=-2|a|×=-2|a|4.答案:49.在ABC中,abc分别是内角ABC的对边,且B为锐角,若sin BSABC,则b的值为________解析:ac.SABCacsin Bsin Bac5.联立①②a5,且c2.sin BB为锐角知cos B由余弦定理知b22542×5×2×14b.答案:10.已知A(2,4)B(3,-1)C(3,-4).设abc,且3c=-2b.(1)3ab3c(2)求满足am bn c的实数mn(3)MN的坐标及向量的坐标.解:由已知得a(5,-5)b(6,-3)c(1,8)(1)3ab3c3(5,-5)(6,-3)3(1,8)(1563,-15324)(6,-42)(2)因为m bn c(6mn,-3m8n)所以解得(3)O为坐标原点,因为3c所以3c(3,24)(3,-4)(0,20)所以M(0,20).又因为=-2b所以=-2b(12,6)(3,-4)(9,2)所以N(9,2).所以(9,-18)11(2020·新高考全国卷)accsin A3cb这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC,它的内角ABC的对边分别为abc,且sin Asin BC________解:方案一,选条件.C和余弦定理得.sin Asin B及正弦定理得ab.于是,由此可得bc.ac,解得abc1.因此,选条件时问题中的三角形存在,此时c1.方案二,选条件.C和余弦定理得.sin Asin B及正弦定理得ab.于是,由此可得bcBCA.csin A3,解得cb2a6.因此,选条件时问题中的三角形存在,此时c2.方案三:选条件.C和余弦定理得.sin Asin B及正弦定理得ab.于是,由此可得bc.cb,与bc矛盾.因此,选条件时问题中的三角形不存在.12.已知ABC的内角ABC的对边分别为abca2ab2b20.(1)B,求AC(2)Cc14,求SABC.解:(1)由已知Ba2ab2b20结合正弦定理化简整理得2sin2Asin A10,于是sin A1sin A=-(舍去).因为0<A,所以A.ABCπ所以Cπ.(2)由题意及余弦定理可知a2b2ab196.a2ab2b20,得(ab)(a2b)0.因为ab>0,所以a2b0,即a2b.联立①②解得b2a4.所以SABCabsin C14. 

    相关试卷

    人教A版高中数学必修第二册全册综合验收评价含答案:

    这是一份高中数学人教A版 (2019)必修 第二册全册综合同步练习题,共13页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    人教A版高中数学必修第二册阶段验收评价(一)平面向量及其应用与复数含答案:

    这是一份高中数学人教A版 (2019)必修 第二册全册综合复习练习题,共9页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    人教A版 (2019)必修 第二册第六章 平面向量及其应用6.4 平面向量的应用课时练习:

    这是一份人教A版 (2019)必修 第二册第六章 平面向量及其应用6.4 平面向量的应用课时练习,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map